Model Training Loop

Model Training Loop
Author

Benedict Thekkel

import torch
x = torch.randn(3, requires_grad = True)
print(x)
tensor([-1.2561, -3.5029, -1.4459], requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y*2
z.retain_grad()
z = z.mean()
print(z)
tensor(2.0794, grad_fn=<MeanBackward0>)
z.backward(retain_graph=True)
x,y, z
(tensor([-1.2561, -3.5029, -1.4459], requires_grad=True),
 tensor([ 0.7439, -1.5029,  0.5541], grad_fn=<AddBackward0>),
 tensor(2.0794, grad_fn=<MeanBackward0>))
x.grad, y.grad
(tensor([ 0.9919, -2.0039,  0.7388]), tensor([ 0.9919, -2.0039,  0.7388]))

For multiple z values

import torch
x = torch.randn(3, requires_grad = True)
print(x)
tensor([-1.3521, -0.5026, -0.7557], requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y*2
z.retain_grad()
#z = z.mean()
print(z)
tensor([0.8396, 4.4845, 3.0964], grad_fn=<MulBackward0>)
v = torch.tensor([0.1, 1.0, 0.001], dtype=torch.float32)
z.backward(v, retain_graph=True)
x, y, z
(tensor([-1.3521, -0.5026, -0.7557], requires_grad=True),
 tensor([0.6479, 1.4974, 1.2443], grad_fn=<AddBackward0>),
 tensor([0.8396, 4.4845, 3.0964], grad_fn=<MulBackward0>))
x.grad, y.grad
(tensor([2.5917e-01, 5.9897e+00, 4.9771e-03]),
 tensor([2.5917e-01, 5.9897e+00, 4.9771e-03]))

Stopping gradient descent

x.requires_grad_(False)
print(x)
tensor([-1.3521, -0.5026, -0.7557])
y = x.detach()
print(y)
tensor([-1.3521, -0.5026, -0.7557])
with torch.no_grad():
    print(x)
tensor([-1.3521, -0.5026, -0.7557])

Zeroing Gradients

weights = torch.ones(4, requires_grad=True)

for epoch in range(5):
    model_output = (weights * 3).sum()

    model_output.backward()

    print(weights.grad)
tensor([3., 3., 3., 3.])
tensor([6., 6., 6., 6.])
tensor([9., 9., 9., 9.])
tensor([12., 12., 12., 12.])
tensor([15., 15., 15., 15.])
weights = torch.ones(4, requires_grad=True)

for epoch in range(5):
    model_output = (weights * 3).sum()

    model_output.backward()

    print(weights.grad)

    weights.grad.zero_()
tensor([3., 3., 3., 3.])
tensor([3., 3., 3., 3.])
tensor([3., 3., 3., 3.])
tensor([3., 3., 3., 3.])
tensor([3., 3., 3., 3.])

Backpropagation

weights = torch.ones(4, requires_grad=True)
pip list| grep nbdevAuto
nbdevAuto                 0.0.130        /home/ben/BENEDICT_Only/Benedict_Projects/Benedict_ML/nbdevAuto
Note: you may need to restart the kernel to use updated packages.
from graphviz import Digraph
from nbdevAuto import functions
dot = functions.graph()
# Add nodes with different shapes and formatting
dot.node('x', 'x')
dot.node('a', 'a(x)', shape='circle')
dot.node('y', 'y')
dot.node('b', 'b(y)', shape='circle')
dot.node('z', 'z')

# Add edges with custom labels and formatting
dot.edge('x', 'a')
dot.edge('a', 'y')
dot.edge('y', 'b')
dot.edge('b', 'z')

# Render the graph
dot

Chain rule

\(\dfrac{\delta z}{\delta x} = \dfrac{\delta z}{\delta y} \cdot \dfrac{\delta y}{\delta x}\)

Computational Graph

dot = functions.graph()
# Add nodes with different shapes and formatting
dot.node('x', 'x')
dot.node('*', 'f=x*y', shape='circle')
dot.node('y', 'y')
dot.node('z', 'z')

# Add edges with custom labels and formatting
dot.edge('x', '*')
dot.edge('y', '*')
dot.edge('*', 'z')

# Render the graph
dot

\(\dfrac{\delta z}{\delta x} = \dfrac{\delta xy}{\delta x} = y\)

\(\dfrac{\delta z}{\delta y} = \dfrac{\delta xy}{\delta y} = y\)

$ = $

  1. Forward pass: Computer loss
  2. Compute local gradients
  3. Backward pass: Compute dLoss/dWeights using the Chain Rule
dot = functions.graph()
# Add nodes with different shapes and formatting
dot.node('x', 'x')
dot.node('w', 'w')
dot.node('*', '*\ny1=w*y', shape='circle')

dot.node('y', 'y')
dot.node('-', '-\ns= y1-y')

dot.node('^2', '^2\n(y1-y)^2')
dot.node('Loss', 'Loss')
# Add edges with custom labels and formatting
dot.edge('x', '*')
dot.edge('w', '*')

dot.edge('*', '-', label='y1')
dot.edge('y', '-')

dot.edge('-', '^2', label='s')

dot.edge('^2', 'Loss')
# Render the graph
dot

\(Loss = (\hat{y} - y)^2\)

\(\dfrac{\delta loss}{\delta s} = \dfrac{s^2}{s} = 2s\)

\(\dfrac{\delta s}{\delta \hat{y}} = \dfrac{\delta\hat{y} - y}{\delta \hat{y}} = 1\)

\(\dfrac{\delta \hat{y}}{\delta w} = \dfrac{\delta wx}{\delta w} = x\)

\(\therefore \dfrac{\delta loss}{\delta w} = \dfrac{\delta loss}{\delta s} \cdot \dfrac{\delta s}{\delta y} \cdot \dfrac{\delta \hat{y}}{\delta w} = 2 \cdot s \cdot x = 2 \cdot (-1) \cdot (1) = -2\)

x = 1
y = 2
w = 1

y1 = x * w 
s = y1-y
loss = s**2
print(f'x:{x} w:{w} y1:{y1} y:{y} s:{s} loss:{loss}')
x:1 w:1 y1:1 y:2 s:-1 loss:1
import torch
x = torch.tensor(1.0)
y = torch.tensor(2.0)
w = torch.tensor(1.0, requires_grad = True)

lr = 0.005
#forward pass and compute the loss
y1 = w * x
loss = (y1-y)**2

print(y1)
print(loss)
tensor(1., grad_fn=<MulBackward0>)
tensor(1., grad_fn=<PowBackward0>)
# backward pass

loss.backward()
print(w.grad)

w.grad.zero_()
tensor(-2.)
tensor(0.)

Gradient Descent

Numpy

Prediction: Manually

Gradients Computation: Manually

Loss Computation: Manually

Parameter updates: Manually

import numpy as np
x = np.array([1,2,3,4], dtype=np.float32)
y = np.array([2,4,6,8], dtype=np.float32)

w = 0.0
# model
def forward(x):
    return w * x


def loss(y, y_predicted):
    return ((y_predicted - y)**2).mean()
# gradient

# MSE = 1/N * (w*x - y)**2
# dJ/dw = 1/N 2x (w*x - y)

def gradient (x, y, y_predicted):
    return np.dot(2 * x, y_predicted-y).mean()

print(f'Prediction before training: f(5) = {forward(5):.3f}')
Prediction before training: f(5) = 0.000
learning_rate = 0.01
n_iters = 15

for epoch in range(n_iters):
    # prediction = forward pass
    y_pred = forward(x)

    # loss 
    l = loss(y, y_pred)

    # gradients
    dw = gradient(x, y, y_pred)

    # update weights
    w -= learning_rate * dw

    if epoch % 1 == 0:
        print(f'epoc:{epoch}  w = {w:.3f} , y_pred={forward(5)}, y = {10}, loss = {l:.8f}, dw = {dw}')

print(f'Prediction after training: {forward(5):.3f}, y = {10}')
epoc:0  w = 1.200 , y_pred=6.0, y = 10, loss = 30.00000000, dw = -120.0
epoc:1  w = 1.680 , y_pred=8.399999809265136, y = 10, loss = 4.79999924, dw = -47.999996185302734
epoc:2  w = 1.872 , y_pred=9.35999994277954, y = 10, loss = 0.76800019, dw = -19.200002670288086
epoc:3  w = 1.949 , y_pred=9.743999934196472, y = 10, loss = 0.12288000, dw = -7.679999828338623
epoc:4  w = 1.980 , y_pred=9.897600066661834, y = 10, loss = 0.01966083, dw = -3.072002649307251
epoc:5  w = 1.992 , y_pred=9.95904014110565, y = 10, loss = 0.00314574, dw = -1.2288014888763428
epoc:6  w = 1.997 , y_pred=9.983615934848784, y = 10, loss = 0.00050331, dw = -0.4915158748626709
epoc:7  w = 1.999 , y_pred=9.993446409702301, y = 10, loss = 0.00008053, dw = -0.1966094970703125
epoc:8  w = 1.999 , y_pred=9.997378492355345, y = 10, loss = 0.00001288, dw = -0.07864165306091309
epoc:9  w = 2.000 , y_pred=9.998951268196105, y = 10, loss = 0.00000206, dw = -0.03145551681518555
epoc:10  w = 2.000 , y_pred=9.999580299854276, y = 10, loss = 0.00000033, dw = -0.012580633163452148
epoc:11  w = 2.000 , y_pred=9.999832069873808, y = 10, loss = 0.00000005, dw = -0.005035400390625
epoc:12  w = 2.000 , y_pred=9.999932992458342, y = 10, loss = 0.00000001, dw = -0.002018451690673828
epoc:13  w = 2.000 , y_pred=9.999973046779632, y = 10, loss = 0.00000000, dw = -0.00080108642578125
epoc:14  w = 2.000 , y_pred=9.999989175796507, y = 10, loss = 0.00000000, dw = -0.00032258033752441406
Prediction after training: 10.000, y = 10

Torch

Prediction: Manually

Gradients Computation: Autograd

Loss Computation: Manually

Parameter updates: Manually

x = torch.tensor([1,2,3,4], dtype=torch.float32)
y = torch.tensor([2,4,6,8], dtype=torch.float32)

w = torch.tensor([0.0], dtype=torch.float32, requires_grad=True)
# model
def forward(x):
    return w * x


def loss(y, y_predicted):
    return ((y_predicted - y)**2).mean()
# gradient

# MSE = 1/N * (w*x - y)**2
# dJ/dw = 1/N 2x (w*x - y)

print(f'Prediction before training: f(5) = {forward(5)}')
Prediction before training: f(5) = tensor([0.], grad_fn=<MulBackward0>)
learning_rate = 0.01
n_iters = 50

for epoch in range(n_iters):
    # prediction = forward pass
    y_pred = forward(x)

    # loss 
    l = loss(y, y_pred)

    # gradients
    l.backward()

    # update weights
    with torch.no_grad():
        w -= learning_rate * w.grad

    if epoch % 2 == 0:
        print(f'epoc:{epoch}  w = {w.item():.3f}, y_pred={forward(5).item():.3f}, y = {10}, loss = {l.item():.7f}, dw = {w.grad.item():.7f}')

    w.grad.zero_()

print(f'Prediction after training: {forward(5)}, y = {10}')
epoc:0  w = 0.300, y_pred=1.500, y = 10, loss = 30.0000000, dw = -30.0000000
epoc:2  w = 0.772, y_pred=3.859, y = 10, loss = 15.6601877, dw = -21.6749992
epoc:4  w = 1.113, y_pred=5.563, y = 10, loss = 8.1747169, dw = -15.6601877
epoc:6  w = 1.359, y_pred=6.794, y = 10, loss = 4.2672529, dw = -11.3144855
epoc:8  w = 1.537, y_pred=7.684, y = 10, loss = 2.2275321, dw = -8.1747150
epoc:10  w = 1.665, y_pred=8.327, y = 10, loss = 1.1627856, dw = -5.9062314
epoc:12  w = 1.758, y_pred=8.791, y = 10, loss = 0.6069812, dw = -4.2672515
epoc:14  w = 1.825, y_pred=9.126, y = 10, loss = 0.3168478, dw = -3.0830884
epoc:16  w = 1.874, y_pred=9.369, y = 10, loss = 0.1653965, dw = -2.2275314
epoc:18  w = 1.909, y_pred=9.544, y = 10, loss = 0.0863381, dw = -1.6093917
epoc:20  w = 1.934, y_pred=9.671, y = 10, loss = 0.0450689, dw = -1.1627841
epoc:22  w = 1.952, y_pred=9.762, y = 10, loss = 0.0235263, dw = -0.8401127
epoc:24  w = 1.966, y_pred=9.828, y = 10, loss = 0.0122808, dw = -0.6069803
epoc:26  w = 1.975, y_pred=9.876, y = 10, loss = 0.0064107, dw = -0.4385428
epoc:28  w = 1.982, y_pred=9.910, y = 10, loss = 0.0033464, dw = -0.3168479
epoc:30  w = 1.987, y_pred=9.935, y = 10, loss = 0.0017469, dw = -0.2289228
epoc:32  w = 1.991, y_pred=9.953, y = 10, loss = 0.0009119, dw = -0.1653977
epoc:34  w = 1.993, y_pred=9.966, y = 10, loss = 0.0004760, dw = -0.1194997
epoc:36  w = 1.995, y_pred=9.976, y = 10, loss = 0.0002485, dw = -0.0863385
epoc:38  w = 1.996, y_pred=9.982, y = 10, loss = 0.0001297, dw = -0.0623794
epoc:40  w = 1.997, y_pred=9.987, y = 10, loss = 0.0000677, dw = -0.0450683
epoc:42  w = 1.998, y_pred=9.991, y = 10, loss = 0.0000353, dw = -0.0325624
epoc:44  w = 1.999, y_pred=9.993, y = 10, loss = 0.0000184, dw = -0.0235248
epoc:46  w = 1.999, y_pred=9.995, y = 10, loss = 0.0000096, dw = -0.0169984
epoc:48  w = 1.999, y_pred=9.997, y = 10, loss = 0.0000050, dw = -0.0122809
Prediction after training: tensor([9.9970], grad_fn=<MulBackward0>), y = 10

Pytorch Loss and Pytorch Optimizer

Prediction: Manually

Gradients Computation: Autograd

Loss Computation: Pytorch Loss

Parameter updates: Pytorch Optimizer

  1. Design Model = (input, output, size, forward pass)
  2. Construct loss and optimizer
  3. Training loop
    • forward pass: compute prediction
    • backward pass: gradients
    • update weights
import torch
import torch.nn as nn

x = torch.tensor([1,2,3,4], dtype=torch.float32)
y = torch.tensor([2,4,6,8], dtype=torch.float32)

w = torch.tensor([0.0], dtype=torch.float32, requires_grad=True)
# model
def forward(x):
    return w * x
print(f'Prediction before training: f(5) = {forward(5)}')
Prediction before training: f(5) = tensor([0.], grad_fn=<MulBackward0>)
learning_rate = 0.01
n_iters = 50

loss = nn.MSELoss()
optimizer = torch.optim.SGD([w], lr= learning_rate)

for epoch in range(n_iters):
    # prediction = forward pass
    y_pred = forward(x)

    # loss 
    l = loss(y, y_pred)

    # gradients
    l.backward()

    optimizer.step()


    if epoch % 2 == 0:
        print(f'epoc:{epoch}  w = {w.item():.3f}, y_pred={forward(5).item():.3f}, y = {10}, loss = {l.item():.7f}, dw = {w.grad.item():.7f}')

    optimizer.zero_grad()

print(f'Prediction after training: {forward(5)}, y = {10}')
epoc:0  w = 0.300, y_pred=1.500, y = 10, loss = 30.0000000, dw = -30.0000000
epoc:2  w = 0.772, y_pred=3.859, y = 10, loss = 15.6601877, dw = -21.6749992
epoc:4  w = 1.113, y_pred=5.563, y = 10, loss = 8.1747169, dw = -15.6601877
epoc:6  w = 1.359, y_pred=6.794, y = 10, loss = 4.2672529, dw = -11.3144855
epoc:8  w = 1.537, y_pred=7.684, y = 10, loss = 2.2275321, dw = -8.1747150
epoc:10  w = 1.665, y_pred=8.327, y = 10, loss = 1.1627856, dw = -5.9062314
epoc:12  w = 1.758, y_pred=8.791, y = 10, loss = 0.6069812, dw = -4.2672515
epoc:14  w = 1.825, y_pred=9.126, y = 10, loss = 0.3168478, dw = -3.0830884
epoc:16  w = 1.874, y_pred=9.369, y = 10, loss = 0.1653965, dw = -2.2275314
epoc:18  w = 1.909, y_pred=9.544, y = 10, loss = 0.0863381, dw = -1.6093917
epoc:20  w = 1.934, y_pred=9.671, y = 10, loss = 0.0450689, dw = -1.1627841
epoc:22  w = 1.952, y_pred=9.762, y = 10, loss = 0.0235263, dw = -0.8401127
epoc:24  w = 1.966, y_pred=9.828, y = 10, loss = 0.0122808, dw = -0.6069803
epoc:26  w = 1.975, y_pred=9.876, y = 10, loss = 0.0064107, dw = -0.4385428
epoc:28  w = 1.982, y_pred=9.910, y = 10, loss = 0.0033464, dw = -0.3168479
epoc:30  w = 1.987, y_pred=9.935, y = 10, loss = 0.0017469, dw = -0.2289228
epoc:32  w = 1.991, y_pred=9.953, y = 10, loss = 0.0009119, dw = -0.1653977
epoc:34  w = 1.993, y_pred=9.966, y = 10, loss = 0.0004760, dw = -0.1194997
epoc:36  w = 1.995, y_pred=9.976, y = 10, loss = 0.0002485, dw = -0.0863385
epoc:38  w = 1.996, y_pred=9.982, y = 10, loss = 0.0001297, dw = -0.0623794
epoc:40  w = 1.997, y_pred=9.987, y = 10, loss = 0.0000677, dw = -0.0450683
epoc:42  w = 1.998, y_pred=9.991, y = 10, loss = 0.0000353, dw = -0.0325624
epoc:44  w = 1.999, y_pred=9.993, y = 10, loss = 0.0000184, dw = -0.0235248
epoc:46  w = 1.999, y_pred=9.995, y = 10, loss = 0.0000096, dw = -0.0169984
epoc:48  w = 1.999, y_pred=9.997, y = 10, loss = 0.0000050, dw = -0.0122809
Prediction after training: tensor([9.9970], grad_fn=<MulBackward0>), y = 10

Pytorch Automate

Prediction: Manually

Gradients Computation: Autograd

Loss Computation: Pytorch Loss

Parameter updates: Pytorch Optimizer

import torch
import torch.nn as nn

x = torch.tensor([[1],[2],[3],[4]], dtype=torch.float32)
y = torch.tensor([[2],[4],[6],[8]], dtype=torch.float32)

x_test = torch.tensor([5], dtype = torch.float32)
n_samples, n_features = x.shape
n_samples, n_features
(4, 1)
model = nn.Linear(in_features = n_features, out_features = 1)
model
Linear(in_features=1, out_features=1, bias=True)
[w,b] = model.parameters()
w[0].item()
-0.8376840353012085
model.state_dict()['weight']
tensor([[-0.8377]])
print(f'Prediction before training: f(5) = {model(x_test)}')
Prediction before training: f(5) = tensor([-3.8722], grad_fn=<ViewBackward0>)
learning_rate = 0.1
n_iters = 500

loss = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr= learning_rate)

for epoch in range(n_iters):
    # prediction = forward pass
    y_pred = model(x)

    # loss 
    l = loss(y, y_pred)

    # gradients
    l.backward()

    optimizer.step()


    if epoch % 20 == 0:
        [w,b] = model.parameters()
        print(f'epoc:{epoch}  w = {w[0].item():.3f} {b[0].item():.3f}, y_pred={model(x_test).item():.3f}, y = {10}, loss = {l.item():.7f}, dw = {w.grad.item():.7f}')

    optimizer.zero_grad()

print(f'Prediction after training: {model(x_test)}, y = {10}')
epoc:0  w = 3.261 1.672, y_pred=17.975, y = 10, loss = 56.0067291, dw = -40.9841690
epoc:20  w = 1.794 0.607, y_pred=9.578, y = 10, loss = 0.0653165, dw = -0.0772833
epoc:40  w = 1.888 0.330, y_pred=9.769, y = 10, loss = 0.0193617, dw = -0.0346756
epoc:60  w = 1.939 0.180, y_pred=9.874, y = 10, loss = 0.0057399, dw = -0.0188781
epoc:80  w = 1.967 0.098, y_pred=9.931, y = 10, loss = 0.0017016, dw = -0.0102807
epoc:100  w = 1.982 0.053, y_pred=9.963, y = 10, loss = 0.0005045, dw = -0.0055964
epoc:120  w = 1.990 0.029, y_pred=9.980, y = 10, loss = 0.0001496, dw = -0.0030484
epoc:140  w = 1.995 0.016, y_pred=9.989, y = 10, loss = 0.0000443, dw = -0.0016569
epoc:160  w = 1.997 0.009, y_pred=9.994, y = 10, loss = 0.0000131, dw = -0.0009021
epoc:180  w = 1.998 0.005, y_pred=9.997, y = 10, loss = 0.0000039, dw = -0.0004910
epoc:200  w = 1.999 0.003, y_pred=9.998, y = 10, loss = 0.0000012, dw = -0.0002694
epoc:220  w = 2.000 0.001, y_pred=9.999, y = 10, loss = 0.0000003, dw = -0.0001463
epoc:240  w = 2.000 0.001, y_pred=9.999, y = 10, loss = 0.0000001, dw = -0.0000764
epoc:260  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000430
epoc:280  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000240
epoc:300  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000120
epoc:320  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000055
epoc:340  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000049
epoc:360  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000038
epoc:380  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000001
epoc:400  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000017
epoc:420  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000015
epoc:440  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = 0.0000001
epoc:460  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000001
epoc:480  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = 0.0000007
Prediction after training: tensor([10.], grad_fn=<ViewBackward0>), y = 10

Pytorch Model

Prediction: Manually

Gradients Computation: Autograd

Loss Computation: Pytorch Loss

Parameter updates: Pytorch Optimizer

  1. Design Model = (input, output, size, forward pass)
  2. Construct loss and optimizer
  3. Training loop
    • forward pass: compute prediction
    • backward pass: gradients
    • update weights
import torch
import torch.nn as nn

x = torch.tensor([[1],[2],[3],[4]], dtype=torch.float32)
y = torch.tensor([[2],[4],[6],[8]], dtype=torch.float32)

x_test = torch.tensor([5], dtype = torch.float32)
n_samples, n_features = x.shape
n_samples, n_features
(4, 1)
model = nn.Linear(in_features = n_features, out_features = 1)
model
Linear(in_features=1, out_features=1, bias=True)
class LinearRegression(nn.Module):
    def __init__(self, in_features, out_features):
        super(LinearRegression, self).__init__()

        self.lin = nn.Linear(in_features, out_features)

    def forward(self, x):
        return self.lin(x)

model = LinearRegression(in_features = n_features, out_features = 1)
model
LinearRegression(
  (lin): Linear(in_features=1, out_features=1, bias=True)
)
[w,b] = model.parameters()
w[0].item()
-0.08443880081176758
model.state_dict()['lin.weight']
tensor([[-0.0844]])
print(f'Prediction before training: f(5) = {model(x_test)}')
Prediction before training: f(5) = tensor([-0.1386], grad_fn=<ViewBackward0>)
learning_rate = 0.1
n_iters = 500

loss = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr= learning_rate)

for epoch in range(n_iters):
    # prediction = forward pass
    y_pred = model(x)

    # loss 
    l = loss(y, y_pred)

    # gradients
    l.backward()

    optimizer.step()


    if epoch % 20 == 0:
        [w,b] = model.parameters()
        print(f'epoc:{epoch}  w = {w[0].item():.3f} {b[0].item():.3f}, y_pred={model(x_test).item():.3f}, y = {10}, loss = {l.item():.7f}, dw = {w.grad.item():.7f}')

    optimizer.zero_grad()

print(f'Prediction after training: {model(x_test)}, y = {10}')
epoc:0  w = 2.900 1.269, y_pred=15.771, y = 10, loss = 29.7110996, dw = -29.8484650
epoc:20  w = 1.841 0.470, y_pred=9.673, y = 10, loss = 0.0391924, dw = -0.0592351
epoc:40  w = 1.913 0.256, y_pred=9.821, y = 10, loss = 0.0116179, dw = -0.0268617
epoc:60  w = 1.953 0.139, y_pred=9.902, y = 10, loss = 0.0034442, dw = -0.0146208
epoc:80  w = 1.974 0.076, y_pred=9.947, y = 10, loss = 0.0010210, dw = -0.0079615
epoc:100  w = 1.986 0.041, y_pred=9.971, y = 10, loss = 0.0003027, dw = -0.0043370
epoc:120  w = 1.992 0.022, y_pred=9.984, y = 10, loss = 0.0000897, dw = -0.0023587
epoc:140  w = 1.996 0.012, y_pred=9.991, y = 10, loss = 0.0000266, dw = -0.0012866
epoc:160  w = 1.998 0.007, y_pred=9.995, y = 10, loss = 0.0000079, dw = -0.0007011
epoc:180  w = 1.999 0.004, y_pred=9.997, y = 10, loss = 0.0000023, dw = -0.0003816
epoc:200  w = 1.999 0.002, y_pred=9.999, y = 10, loss = 0.0000007, dw = -0.0002074
epoc:220  w = 2.000 0.001, y_pred=9.999, y = 10, loss = 0.0000002, dw = -0.0001137
epoc:240  w = 2.000 0.001, y_pred=10.000, y = 10, loss = 0.0000001, dw = -0.0000589
epoc:260  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000327
epoc:280  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000174
epoc:300  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000103
epoc:320  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000072
epoc:340  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000017
epoc:360  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000023
epoc:380  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000023
epoc:400  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000010
epoc:420  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000023
epoc:440  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = 0.0000000
epoc:460  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000007
epoc:480  w = 2.000 0.000, y_pred=10.000, y = 10, loss = 0.0000000, dw = -0.0000015
Prediction after training: tensor([10.0000], grad_fn=<ViewBackward0>), y = 10

Linear Regression

import torch
import torch.nn as nn
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
  1. Prepare data
  2. model
  3. loss and optimizer
  4. training loop
x_numpy, y_numpy = datasets.make_regression(n_samples= 100, n_features=1, noise = 20, random_state = 1)
x = torch.from_numpy(x_numpy.astype(np.float32))
y = torch.from_numpy(y_numpy.astype(np.float32))
x[:5], y[:5]
(tensor([[-0.6118],
         [-0.2494],
         [ 0.4885],
         [ 0.7620],
         [ 1.5198]]),
 tensor([-55.5386, -10.6620,  22.7574, 101.0961, 144.3376]))
x_test = x[4]
y_test = y[4]
x_test, y_test
(tensor([1.5198]), tensor(144.3376))
y =y.view(y.shape[0], 1)
x[:5], y[:5]
(tensor([[-0.6118],
         [-0.2494],
         [ 0.4885],
         [ 0.7620],
         [ 1.5198]]),
 tensor([[-55.5386],
         [-10.6620],
         [ 22.7574],
         [101.0961],
         [144.3376]]))
n_samples, n_features = x.shape
n_samples, n_features
(100, 1)
#1.model
input_size = n_features
output_size = 1
model = nn.Linear(input_size, output_size)
model
Linear(in_features=1, out_features=1, bias=True)
[a,b] = model.parameters()
a,b
(Parameter containing:
 tensor([[-0.3357]], requires_grad=True),
 Parameter containing:
 tensor([0.3514], requires_grad=True))
#2. loss and optimizer
learning_rate = 0.01
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr= learning_rate)
optimizer
SGD (
Parameter Group 0
    dampening: 0
    differentiable: False
    foreach: None
    lr: 0.01
    maximize: False
    momentum: 0
    nesterov: False
    weight_decay: 0
)
#3. training loop
num_epochs = 1000

for epoch in range(num_epochs):
    #forward pass and loss
    y_predicted = model(x)
    loss=criterion(y_predicted, y)

    # backward pass
    loss.backward()

    #update
    optimizer.step()

    if (epoch + 1) % 50 == 0:
        [w,b] = model.parameters()
        print(f'[epoc:{epoch}] (y = {w[0].item():.3f}x + {b[0].item():.3f}) y_pred:{model(x_test).item():.3f}, y:{y_test}, loss :{loss.item():.7f}, dw:{w.grad.item():.7f} db:{b.grad.item():.7f}')

    optimizer.zero_grad()
[epoc:49] (y = 45.054x + 4.782) y_pred:73.255, y:144.33755493164062, loss :1468.2329102, dw:-59.7857857 db:-3.2169607
[epoc:99] (y = 65.507x + 5.259) y_pred:104.818, y:144.33755493164062, loss :565.6588745, dw:-27.0066071 db:0.3266662
[epoc:149] (y = 74.762x + 4.920) y_pred:118.545, y:144.33755493164062, loss :380.9410095, dw:-12.2441845 db:0.7970295
[epoc:199] (y = 78.964x + 4.564) y_pred:124.575, y:144.33755493164062, loss :342.6767883, dw:-5.5675182 db:0.5981486
[epoc:249] (y = 80.877x + 4.328) y_pred:127.246, y:144.33755493164062, loss :334.6894531, dw:-2.5375218 db:0.3580039
[epoc:299] (y = 81.749x + 4.195) y_pred:128.438, y:144.33755493164062, loss :333.0141296, dw:-1.1586771 db:0.1943260
[epoc:349] (y = 82.148x + 4.124) y_pred:128.973, y:144.33755493164062, loss :332.6617126, dw:-0.5298302 db:0.0999891
[epoc:399] (y = 82.330x + 4.088) y_pred:129.215, y:144.33755493164062, loss :332.5874329, dw:-0.2425606 db:0.0497854
[epoc:449] (y = 82.414x + 4.070) y_pred:129.324, y:144.33755493164062, loss :332.5717468, dw:-0.1111394 db:0.0242567
[epoc:499] (y = 82.452x + 4.062) y_pred:129.374, y:144.33755493164062, loss :332.5684509, dw:-0.0509445 db:0.0116392
[epoc:549] (y = 82.470x + 4.058) y_pred:129.396, y:144.33755493164062, loss :332.5677490, dw:-0.0233506 db:0.0055273
[epoc:599] (y = 82.478x + 4.056) y_pred:129.407, y:144.33755493164062, loss :332.5675659, dw:-0.0107345 db:0.0026025
[epoc:649] (y = 82.481x + 4.055) y_pred:129.411, y:144.33755493164062, loss :332.5675659, dw:-0.0049275 db:0.0012180
[epoc:699] (y = 82.483x + 4.054) y_pred:129.414, y:144.33755493164062, loss :332.5675659, dw:-0.0022745 db:0.0005686
[epoc:749] (y = 82.484x + 4.054) y_pred:129.415, y:144.33755493164062, loss :332.5675659, dw:-0.0010500 db:0.0002624
[epoc:799] (y = 82.484x + 4.054) y_pred:129.415, y:144.33755493164062, loss :332.5675659, dw:-0.0004619 db:0.0001247
[epoc:849] (y = 82.484x + 4.054) y_pred:129.415, y:144.33755493164062, loss :332.5675659, dw:-0.0003704 db:0.0000531
[epoc:899] (y = 82.484x + 4.054) y_pred:129.415, y:144.33755493164062, loss :332.5675659, dw:-0.0003721 db:0.0000235
[epoc:949] (y = 82.484x + 4.054) y_pred:129.415, y:144.33755493164062, loss :332.5675659, dw:-0.0003721 db:0.0000235
[epoc:999] (y = 82.484x + 4.054) y_pred:129.415, y:144.33755493164062, loss :332.5675659, dw:-0.0003721 db:0.0000235
predicted = model(x).detach().numpy()
plt.plot(x_numpy, y_numpy, 'ro')
plt.plot(x_numpy, predicted, 'b')
plt.show()

from bokeh.io import output_notebook
output_notebook()
Loading BokehJS ...
from bokeh.plotting import figure, show

from bokeh.io import curdoc
# apply theme to current document
curdoc().theme = "dark_minimal"


# create a new plot with a title and axis labels
p = figure(title="Real data vs Model",
           x_axis_label='x',
           y_axis_label='y',
           sizing_mode="stretch_width",
           max_width=1000,
           height=500,)


# add a line renderer with legend and line thickness to the plot
p.circle(x_numpy.flatten(), y_numpy.flatten(), legend_label="Original", line_width=2, color="red", radius=0.02)
p.line(x_numpy.flatten(), predicted.flatten(), legend_label="Predicted", line_width=2)

p.legend.location = "top_left"
p.legend.click_policy="mute"

# show the results
show(p)

Logistic Regression

import torch
import torch.nn as nn
import numpy as np
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
bc = datasets.load_breast_cancer()
bc.keys()
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
x, y = bc.data, bc.target
n_samples, n_features = x.shape
n_samples, n_features
(569, 30)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 1234)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((455, 30), (114, 30), (455,), (114,))
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
x_train = torch.from_numpy(x_train.astype(np.float32))
x_test = torch.from_numpy(x_test.astype(np.float32))
y_train = torch.from_numpy(y_train.astype(np.float32))
y_test = torch.from_numpy(y_test.astype(np.float32))
y_train = y_train.view(y_train.shape[0], 1)
#1. model

class LogisticRegression(nn.Module):
    def __init__(self, n_input):
        super(LogisticRegression, self).__init__()

        self.linear = nn.Linear(n_input, 1)

    def forward(self, x):
        y_pred = torch.sigmoid(self.linear(x))

        return y_pred

model = LogisticRegression(n_features)
#2. loss and optimizer
learning_rate = 0.01
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr = learning_rate)
#3. train loop
num_epochs = 1000
for epoch in range(num_epochs):
    #forward pass and loss
    y_predicted = model(x_train)
    loss=criterion(y_predicted, y_train)

    # backward pass
    loss.backward()

    #update
    optimizer.step()

    if (epoch + 1) % 50 == 0:
        with torch.no_grad():
            [w,b] = model.parameters()
            y_predicted = model(x_test)
            y_predicted_cls = y_predicted.round().flatten()
            acc = (y_predicted_cls == y_test).float().mean() * 100
            error = (100 - acc)
            print(f'[epoc:{epoch + 1}] (y = {w.mean().item():.3f}x + {b.mean().item():.3f}) \
            loss:{loss.item():.5f}, accuracy: {acc:.2f}%, error: {error:.2f}%, \
            dw:{w.grad.mean().item():.5f} db:{b.grad.mean().item():.5f}')

    optimizer.zero_grad()
[epoc:50] (y = -0.171x + 0.301)             loss:0.11539, accuracy: 93.86%, error: 6.14%,             dw:0.01317 db:-0.03279
[epoc:100] (y = -0.222x + 0.488)             loss:0.07955, accuracy: 94.74%, error: 5.26%,             dw:0.00604 db:-0.01464
[epoc:150] (y = -0.257x + 0.602)             loss:0.06487, accuracy: 95.61%, error: 4.39%,             dw:0.00404 db:-0.00820
[epoc:200] (y = -0.286x + 0.681)             loss:0.05622, accuracy: 96.49%, error: 3.51%,             dw:0.00301 db:-0.00513
[epoc:250] (y = -0.311x + 0.739)             loss:0.05038, accuracy: 95.61%, error: 4.39%,             dw:0.00238 db:-0.00343
[epoc:300] (y = -0.334x + 0.783)             loss:0.04613, accuracy: 95.61%, error: 4.39%,             dw:0.00197 db:-0.00240
[epoc:350] (y = -0.355x + 0.817)             loss:0.04288, accuracy: 95.61%, error: 4.39%,             dw:0.00167 db:-0.00173
[epoc:400] (y = -0.375x + 0.844)             loss:0.04031, accuracy: 95.61%, error: 4.39%,             dw:0.00144 db:-0.00128
[epoc:450] (y = -0.394x + 0.866)             loss:0.03821, accuracy: 95.61%, error: 4.39%,             dw:0.00126 db:-0.00096
[epoc:500] (y = -0.412x + 0.883)             loss:0.03648, accuracy: 95.61%, error: 4.39%,             dw:0.00112 db:-0.00073
[epoc:550] (y = -0.429x + 0.898)             loss:0.03501, accuracy: 95.61%, error: 4.39%,             dw:0.00101 db:-0.00056
[epoc:600] (y = -0.445x + 0.909)             loss:0.03374, accuracy: 95.61%, error: 4.39%,             dw:0.00091 db:-0.00042
[epoc:650] (y = -0.460x + 0.918)             loss:0.03264, accuracy: 95.61%, error: 4.39%,             dw:0.00083 db:-0.00032
[epoc:700] (y = -0.475x + 0.925)             loss:0.03167, accuracy: 95.61%, error: 4.39%,             dw:0.00076 db:-0.00024
[epoc:750] (y = -0.489x + 0.931)             loss:0.03080, accuracy: 95.61%, error: 4.39%,             dw:0.00070 db:-0.00017
[epoc:800] (y = -0.503x + 0.935)             loss:0.03003, accuracy: 95.61%, error: 4.39%,             dw:0.00065 db:-0.00012
[epoc:850] (y = -0.516x + 0.938)             loss:0.02932, accuracy: 95.61%, error: 4.39%,             dw:0.00060 db:-0.00008
[epoc:900] (y = -0.529x + 0.940)             loss:0.02868, accuracy: 95.61%, error: 4.39%,             dw:0.00056 db:-0.00004
[epoc:950] (y = -0.542x + 0.941)             loss:0.02809, accuracy: 95.61%, error: 4.39%,             dw:0.00052 db:-0.00002
[epoc:1000] (y = -0.554x + 0.942)             loss:0.02754, accuracy: 95.61%, error: 4.39%,             dw:0.00049 db:0.00001
with torch.no_grad():
    [w,b] = model.parameters()
    y_predicted = model(x_test)
    y_predicted_cls = y_predicted.round().flatten()
    acc = (y_predicted_cls == y_test).float().mean() * 100
    error = (100 - acc)
    print(f'[epoc:{epoch + 1}] (y = {w.mean().item():.3f}x + {b.mean().item():.3f}) \
    loss:{loss.item():.5f}, accuracy: {acc:.2f}%, error: {error:.2f}%')
[epoc:1000] (y = -0.554x + 0.942)     loss:0.02754, accuracy: 95.61%, error: 4.39%

Softmax and Cross-Entropy

Softmax

\(S(y_i) = \frac{e^{y_i}}{\sum e^{y_i}}\)

\(Linear = [2.0, 1.0, 0.1]\)

\(Softmax = [0.7, 0.2, 0.1]\)

Adds to 1

def softmax(x):
    return np.exp(x) / np.sum(np.exp(x), axis = 0)

x = np.array([2.0, 1.0, 0.1])
outputs = softmax(x)
outputs
array([0.65900114, 0.24243297, 0.09856589])
x = torch.from_numpy(x)
x
tensor([2.0000, 1.0000, 0.1000], dtype=torch.float64)
outputs = torch.softmax(x, dim = 0)
outputs
tensor([0.6590, 0.2424, 0.0986], dtype=torch.float64)

Cross Entropy

\(D(\hat{Y}, Y) = \dfrac{1}{N} \cdot \displaystyle\sum_{i=1}^{N} Y_i \cdot \log{\hat{Y_i}}\)

\(Y = [1, 0, 0]\)

\(\hat{Y} = [0.7, 0.2, 0.1] --> D(\hat{Y}, Y) = 0.35\)

\(Y = [1, 0, 0]\)

\(\hat{Y} = [0.7, 0.2, 0.1] --> D(\hat{Y}, Y) = 2.30\)

def cross_entropy(actual, predicted):
    loss = -np.sum(actual * np.log(predicted))
    return loss
Y_actual = np.array([1,0,0])

Y_pred_good = np.array([0.7, 0.2, 0.1])
Y_pred_bad = np.array([0.1, 0.3, 0.6])

l1 = cross_entropy(Y_actual, Y_pred_good)
l2 = cross_entropy(Y_actual, Y_pred_bad)
print(f'good pred:{l1:4f}, bad pred:{l2:.4f}')
good pred:0.356675, bad pred:2.3026

nn.CrossEntropyLoss()

applies nn.LogSoftmax + nn.NLLLoss(negative log likelihood loss)

y has class labels, not One-Hot!

Y_pred has raw scores(logits), no softmax

loss = nn.CrossEntropyLoss()
Y = torch.tensor([0])

Y_pred_good = torch.tensor([[2.0, 1.0, 0.1]])
Y_pred_bad = torch.tensor([[0.5, 2.0, 0.3]])

l1 = loss(Y_pred_good, Y)
l2 = loss(Y_pred_bad, Y)

print(f'good pred:{l1:4f}, bad pred:{l2:.4f}')
good pred:0.417030, bad pred:1.8406
_, predictions1 = torch.max(Y_pred_good, 1)
_, predictions2 = torch.max(Y_pred_bad, 1)

print(f'good pred:{predictions1}, bad pred:{predictions2}')
good pred:tensor([0]), bad pred:tensor([1])
#Multiclass Problem
class NeuralNet2(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet2, self).__init__()
        self.linear1 = nn.Linear(input_size, hidden_size)
        self.rely = nn.ReLU()
        self.linear2 = nn.Linear(hidden_size, num_classes)
        

    def forward(self, x):
        out = self.linear1(x)
        out = self.relu(out)
        out = self.linear2(out)

        return out
model = NeuralNet2(input_size = 28 * 28, hidden_size = 5, num_classes = 3)
crioterion = nn.CrossEntropyLoss()

Activation Functions

Without activation functions, our network is basically just a stacked linear regression model

import torch
import torch.nn as nn
import torch.nn.functional as F
#Option 1 (create nn modules)
class NeuralNet2(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet2, self).__init__()
        self.linear1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(hidden_size, num_classes)
        self.sigmoid = nn.Sigmoid()
        

    def forward(self, x):
        out = self.linear1(x)
        out = self.relu(out)
        out = self.linear2(out)
        out = self.sigmoid(out)

        return out
#Option 2 (use activation functions directly in forward pass)
class NeuralNet2(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet2, self).__init__()
        self.linear1 = nn.Linear(input_size, hidden_size)
        self.linear2 = nn.Linear(hidden_size, num_classes)
        

    def forward(self, x):
        out = torch.relu(self.linear1(x))
        out = torch.sigmoid(self.linear2(out))

        return out

MLP on MNIST

  • MNIST
  • DataLoader, Transformation
  • Multilayer Neural Net, activation function
  • Loss and Optimizer
  • Training Loop (batch training)
  • Model evaluation
  • GPU Support
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms 
from torchvision.transforms import ToPILImage
import matplotlib.pyplot as plt
torch.cuda.is_available()
True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
input_size = 28 * 28
hidden_size = 100
num_classes = 10
num_epochs = 2
batch_size = 100
train_dataset = torchvision.datasets.MNIST(root="./data",
                                           download=True,
                                           train=True,
                                           transform=transforms.ToTensor())

test_dataset = torchvision.datasets.MNIST(root="./data",
                                          download=True,
                                          train=False,
                                          transform=transforms.ToTensor())

train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
                                           batch_size = batch_size,
                                           shuffle = True)

test_loader = torch.utils.data.DataLoader(dataset = train_dataset,
                                          batch_size = batch_size,
                                          shuffle = False)
len(train_dataset), len(test_dataset)
(60000, 10000)
image, label = train_dataset[1]
plt.imshow(transforms.ToPILImage()(image), cmap='gray')
plt.axis('off')
plt.show()

examples = iter(train_loader)
images, labels = next(examples)
images.shape, labels.shape
(torch.Size([100, 1, 28, 28]), torch.Size([100]))
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.imshow(images[i][0], cmap = 'gray')
    plt.axis('off')

plt.show()

# model
class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.l1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.l2 = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        out = self.l1(x)
        out = self.relu(out)
        out = self.l2(out)
        
        return out

model = NeuralNet(input_size, hidden_size, num_classes).to(device)
# loss and optimizer
learning_rate = 0.001
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = learning_rate)
# Train loop
n_total_steps = len(train_loader)
running_loss = 0.0
print_stat = 100

for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # 100, 1, 28, 28 --> 100 , 28 * 28
        images = images.reshape(-1, 28 * 28).to(device)
        labels = labels.to(device)

        # forward
        outputs = model(images)
        loss = criterion(outputs, labels)

        #backwards
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if (i + 1) % print_stat == 0:
            with torch.no_grad():
                n_correct = 0
                n_samples = 0
                for images, labels in test_loader:
                    images = images.reshape(-1, 28 * 28).to(device)
                    labels = labels.to(device)
                    outputs = model(images)

                    _, predictions = torch.max(outputs, 1)
                    n_samples += labels.shape[0]
                    n_correct += (predictions == labels).sum().item()
            
                acc = 100.0 * n_correct / n_samples
            
            print(f'[epoch:{epoch+1}/{num_epochs}, [step:{i+1}/{n_total_steps}] loss:{(running_loss/print_stat):.4f} accuracy:{acc}')
            running_loss = 0.0
[epoch:1/2, [step:100/600] loss:0.9543 accuracy:88.51333333333334
[epoch:1/2, [step:200/600] loss:0.3956 accuracy:90.49166666666666
[epoch:1/2, [step:300/600] loss:0.3070 accuracy:91.86666666666666
[epoch:1/2, [step:400/600] loss:0.2970 accuracy:92.62
[epoch:1/2, [step:500/600] loss:0.2614 accuracy:93.28833333333333
[epoch:1/2, [step:600/600] loss:0.2401 accuracy:93.665
[epoch:2/2, [step:100/600] loss:0.2229 accuracy:94.08166666666666
[epoch:2/2, [step:200/600] loss:0.2201 accuracy:94.43333333333334
[epoch:2/2, [step:300/600] loss:0.1986 accuracy:94.75833333333334
[epoch:2/2, [step:400/600] loss:0.1918 accuracy:94.61666666666666
[epoch:2/2, [step:500/600] loss:0.1879 accuracy:95.115
[epoch:2/2, [step:600/600] loss:0.1609 accuracy:95.52166666666666
# Test
with torch.no_grad():
    n_correct = 0
    n_samples = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28 * 28).to(device)
        labels = labels.to(device)
        outputs = model(images)

        #value, index
        _, predictions = torch.max(outputs, 1)
        n_samples += labels.shape[0]
        n_correct += (predictions == labels).sum().item()

    acc = 100.0 * n_correct / n_samples
    print(f'accuracy = {acc}')
accuracy = 95.52166666666666

CNN on Cifar-10

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms 
from torchvision.transforms import ToPILImage
import matplotlib.pyplot as plt
import numpy as np
torch.cuda.is_available()
True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
num_epochs = 4
batch_size = 100

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root="./data", 
                                             download=True,
                                             train=True,
                                             transform=transform)

test_dataset = torchvision.datasets.CIFAR10(root="./data",
                                            download=True,
                                            train=False,
                                            transform=transform)

train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
                                           batch_size = batch_size,
                                           shuffle = True)

test_loader = torch.utils.data.DataLoader(dataset = train_dataset,
                                          batch_size = batch_size,
                                          shuffle = False)
Files already downloaded and verified
Files already downloaded and verified
len(train_dataset), len(test_dataset)
(50000, 10000)
classes = train_dataset.class_to_idx
classes = list(train_dataset.class_to_idx)
list(classes)
['airplane',
 'automobile',
 'bird',
 'cat',
 'deer',
 'dog',
 'frog',
 'horse',
 'ship',
 'truck']
examples = iter(train_loader)
images, labels = next(examples)
images.shape, labels.shape
(torch.Size([100, 3, 32, 32]), torch.Size([100]))
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        # input size: 3 colour channels
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 40)
        self.fc3 = nn.Linear(40, 10)
        

    def forward(self, x):
        out = self.pool(F.relu(self.conv1(x)))
        out = self.pool(F.relu(self.conv2(out)))
        out = out.view(-1, 16*5*5)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)

        return out
        

model = ConvNet().to(device)
learning_rate = 0.001
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
# Image Classifier Neural Network
class ImageClassifier(nn.Module): 
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, (3,3)), 
            nn.ReLU(),
            nn.Conv2d(32, 64, (3,3)), 
            nn.ReLU(),
            nn.Conv2d(64, 64, (3,3)), 
            nn.ReLU(),
            nn.Flatten(), 
            nn.Linear(64*(28-2)*(28-2), 10)  
        )

    def forward(self, x): 
        return self.model(x)

model = ImageClassifier().to(device)
# Train loop
n_total_steps = len(train_loader)
running_loss = 0.0
print_stat = 100

for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # 100, 1, 28, 28 --> 100 , 28 * 28
        images = images.to(device)
        labels = labels.to(device)

        # forward
        outputs = model(images)
        loss = criterion(outputs, labels)

        #backwards
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if (i + 1) % print_stat == 0:
            with torch.no_grad():
                n_correct = 0
                n_samples = 0
                for images, labels in test_loader:
                    images = images.to(device)
                    labels = labels.to(device)
                    outputs = model(images)

                    _, predictions = torch.max(outputs, 1)
                    n_samples += labels.shape[0]
                    n_correct += (predictions == labels).sum().item()

                acc = 100.0 * n_correct / n_samples
            
            print(f'[epoch:{epoch+1}/{num_epochs}, [step:{i+1}/{n_total_steps}] loss:{(running_loss/print_stat):.4f} accuracy:{acc}')
            running_loss = 0.0
[epoch:1/4, [step:100/500] loss:2.3045 accuracy:6.866
[epoch:1/4, [step:200/500] loss:2.3044 accuracy:6.866
[epoch:1/4, [step:300/500] loss:2.3047 accuracy:6.866
[epoch:1/4, [step:400/500] loss:2.3047 accuracy:6.866
[epoch:1/4, [step:500/500] loss:2.3048 accuracy:6.866
[epoch:2/4, [step:100/500] loss:2.3046 accuracy:6.866
[epoch:2/4, [step:200/500] loss:2.3045 accuracy:6.866
[epoch:2/4, [step:300/500] loss:2.3046 accuracy:6.866
[epoch:2/4, [step:400/500] loss:2.3046 accuracy:6.866
[epoch:2/4, [step:500/500] loss:2.3048 accuracy:6.866
[epoch:3/4, [step:100/500] loss:2.3044 accuracy:6.866
[epoch:3/4, [step:200/500] loss:2.3045 accuracy:6.866
[epoch:3/4, [step:300/500] loss:2.3047 accuracy:6.866
[epoch:3/4, [step:400/500] loss:2.3051 accuracy:6.866
[epoch:3/4, [step:500/500] loss:2.3044 accuracy:6.866
[epoch:4/4, [step:100/500] loss:2.3046 accuracy:6.866
[epoch:4/4, [step:200/500] loss:2.3046 accuracy:6.866
[epoch:4/4, [step:300/500] loss:2.3048 accuracy:6.866
[epoch:4/4, [step:400/500] loss:2.3048 accuracy:6.866
[epoch:4/4, [step:500/500] loss:2.3044 accuracy:6.866
Back to top