Query Math
🔎 Everything You Need to Know About Query Math in Django ORM
This guide will cover: 1. Basic Math in Queries (F-expressions, arithmetic) 2. Aggregations & Grouping (Sum
, Avg
, Count
, etc.) 3. Annotations (Field-level Math) 4. Window Functions (Rank, DenseRank, etc.) 5. Subquery + OuterRef (Correlated Calculations) 6. Complex Conditions (Q objects, Case/When) 7. Performance Tips 8. Real-world Examples
🧠 1. Basic Math with F-expressions
F()
allows referring to other fields in a model without fetching objects into Python memory.
Math Operations with F()
from django.db.models import F
# Give every product a 10% price increase
=F('price') * 1.1)
Product.objects.update(price
# Deduct stock after an order
=F('stock') - 1)
Product.objects.update(stock
# Compare two fields in a filter
filter(total__gt=F('discount')) Order.objects.
✅ F-expressions avoid extra queries, are database-side, and atomic.
📊 2. Aggregations (Summing, Counting, Averaging)
You can perform aggregate math across rows.
Common Aggregation Functions
from django.db.models import Sum, Avg, Count, Min, Max
# Get total sales
=Sum('total'))
Order.objects.aggregate(total_sales
# Get average order value
=Avg('total'))
Order.objects.aggregate(avg_order
# Count of orders
=Count('id')) Order.objects.aggregate(order_count
Filter + Aggregate Example:
= Order.objects.filter(total__gt=1000).aggregate(
high_value_orders =Sum('total'),
total=Count('id')
count )
➕ 3. Annotations (Per-Row Math)
annotate()
adds calculated fields to each row in a queryset.
Example: Calculate Revenue per Product
from django.db.models import Sum, F
Product.objects.annotate(=F('price') * F('units_sold')
revenue
)
# Fetch revenue with product
for p in Product.objects.annotate(
=F('price') * F('units_sold')
revenue
):print(p.name, p.revenue)
🪝 4. Case/When for Conditional Math
Case
and When
enable conditional logic, like SQL’s CASE ... WHEN ... THEN ... END
.
Example: Apply Discount Conditionally
from django.db.models import Case, When, Value, F
Product.objects.annotate(=Case(
discounted_price=True, then=F('price') * 0.8),
When(is_on_sale=F('price')
default
) )
Another Example: Calculate Employee Bonus
from django.db.models import IntegerField
Employee.objects.annotate(=Case(
bonus=100, then=Value(1000)),
When(sales__gte=50, then=Value(500)),
When(sales__gte=Value(0),
default=IntegerField()
output_field
) )
🔄 5. Window Functions (Advanced Math by Groups)
Window functions perform calculations across a set of rows related to the current row.
Example: Ranking Orders by Amount
from django.db.models import Window
from django.db.models.functions import Rank
Order.objects.annotate(=Window(
rank=Rank(),
expression=F('total').desc()
order_by
) )
Example: Running Totals
from django.db.models.functions import Sum
Order.objects.annotate(=Window(
running_total=Sum('total'),
expression='order_date'
order_by
) )
✅ Great for leaderboards, cumulative sums, partitioned aggregates.
🏎️ 7. Combining Aggregation, Annotation, and Filtering
You can chain these functions for multi-layered math.
Example: Total Spent Per Customer and Filtering High Spenders
Customer.objects.annotate(=Sum('order__total')
total_spentfilter(total_spent__gte=1000) ).
🔨 8. Complex Math: Expressions & Functions
Django Built-in Math Functions:
Function | Purpose |
---|---|
Abs |
Absolute value (Abs(F('field')) ) |
Ceil / Floor |
Round up / down (Ceil(F('field')) ) |
Power |
Exponents (Power(F('field'), 2) ) |
Sqrt |
Square root (Sqrt(F('field')) ) |
Log , Exp |
Logarithm, Exponentiation |
Example: Calculate Compound Interest
from django.db.models.functions import Power
Account.objects.annotate(=F('balance') * Power(1.05, F('years'))
future_value )
🕵️ 9. Q Objects (AND/OR/NOT Conditions)
Q()
objects allow complex WHERE logic.
Example: Math in Filters
from django.db.models import Q
filter(
Product.objects.=100) | Q(stock__lte=10)
Q(price__gte )
Example: Sales Threshold
filter(
Employee.objects.=100) & Q(region='East')
Q(sales__gte )
📈 10. Performance Tips with ORM Math
Tip | Why |
---|---|
Use F() expressions |
Database-side math is faster |
Combine annotate() + aggregate() |
Reduce query round trips |
Use select_related() / prefetch_related() |
Reduce N+1 queries |
Add indexes | Speed up filtering and ordering |
Profile your queries | django-debug-toolbar , EXPLAIN |
Avoid unnecessary fields | Use only() or values() |
✅ Summary of Django Query Math Tools
Tool | Use |
---|---|
F() |
Refer to other fields, arithmetic in DB |
annotate() |
Add calculated fields to each row |
aggregate() |
Calculate sums, averages, counts across all rows |
Case / When |
Conditional math and logic |
Window |
Rankings, cumulative sums, per-group aggregates |
Subquery / OuterRef |
Correlated subqueries for row-level math |
Math Functions | Abs , Power , Ceil , Floor , Log , Exp |
Q() |
Complex query conditions (AND , OR , NOT ) |
⚡ Real-World Scenarios
Task | Solution |
---|---|
Discount based on quantity | Case + When + F() |
Sales leaderboard | Window + Rank |
Latest related record field | OuterRef + Subquery |
Customer lifetime value | annotate(Sum(...)) |
Running totals by date | Window(Sum(...)) |
Tiered commissions | Case + When + annotate() |