Query Math

If you’re working with numbers, aggregations, calculations, and complex query math in Django, the ORM gives you powerful tools to replicate SQL arithmetic, aggregates, and window functions, without raw SQL.
Author

Benedict Thekkel

🔎 Everything You Need to Know About Query Math in Django ORM

This guide will cover: 1. Basic Math in Queries (F-expressions, arithmetic) 2. Aggregations & Grouping (Sum, Avg, Count, etc.) 3. Annotations (Field-level Math) 4. Window Functions (Rank, DenseRank, etc.) 5. Subquery + OuterRef (Correlated Calculations) 6. Complex Conditions (Q objects, Case/When) 7. Performance Tips 8. Real-world Examples

🧠 1. Basic Math with F-expressions

F() allows referring to other fields in a model without fetching objects into Python memory.

Math Operations with F()

from django.db.models import F

# Give every product a 10% price increase
Product.objects.update(price=F('price') * 1.1)

# Deduct stock after an order
Product.objects.update(stock=F('stock') - 1)

# Compare two fields in a filter
Order.objects.filter(total__gt=F('discount'))

✅ F-expressions avoid extra queries, are database-side, and atomic.


📊 2. Aggregations (Summing, Counting, Averaging)

You can perform aggregate math across rows.

Common Aggregation Functions

from django.db.models import Sum, Avg, Count, Min, Max

# Get total sales
Order.objects.aggregate(total_sales=Sum('total'))

# Get average order value
Order.objects.aggregate(avg_order=Avg('total'))

# Count of orders
Order.objects.aggregate(order_count=Count('id'))

Filter + Aggregate Example:

high_value_orders = Order.objects.filter(total__gt=1000).aggregate(
    total=Sum('total'),
    count=Count('id')
)

3. Annotations (Per-Row Math)

annotate() adds calculated fields to each row in a queryset.

Example: Calculate Revenue per Product

from django.db.models import Sum, F

Product.objects.annotate(
    revenue=F('price') * F('units_sold')
)

# Fetch revenue with product
for p in Product.objects.annotate(
    revenue=F('price') * F('units_sold')
):
    print(p.name, p.revenue)

🪝 4. Case/When for Conditional Math

Case and When enable conditional logic, like SQL’s CASE ... WHEN ... THEN ... END.

Example: Apply Discount Conditionally

from django.db.models import Case, When, Value, F

Product.objects.annotate(
    discounted_price=Case(
        When(is_on_sale=True, then=F('price') * 0.8),
        default=F('price')
    )
)

Another Example: Calculate Employee Bonus

from django.db.models import IntegerField

Employee.objects.annotate(
    bonus=Case(
        When(sales__gte=100, then=Value(1000)),
        When(sales__gte=50, then=Value(500)),
        default=Value(0),
        output_field=IntegerField()
    )
)

🔄 5. Window Functions (Advanced Math by Groups)

Window functions perform calculations across a set of rows related to the current row.

Example: Ranking Orders by Amount

from django.db.models import Window
from django.db.models.functions import Rank

Order.objects.annotate(
    rank=Window(
        expression=Rank(),
        order_by=F('total').desc()
    )
)

Example: Running Totals

from django.db.models.functions import Sum

Order.objects.annotate(
    running_total=Window(
        expression=Sum('total'),
        order_by='order_date'
    )
)

✅ Great for leaderboards, cumulative sums, partitioned aggregates.


🔢 6. Subquery + OuterRef (Correlated Subqueries for Math)

Use Subquery + OuterRef for row-by-row subquery math.

Example: Latest Order Amount Per Customer

from django.db.models import Subquery, OuterRef

latest_order = Order.objects.filter(
    customer=OuterRef('pk')
).order_by('-order_date')

Customer.objects.annotate(
    latest_order_total=Subquery(latest_order.values('total')[:1])
)

✅ Combine with F(), Case, and Window for complex formulas.


🏎️ 7. Combining Aggregation, Annotation, and Filtering

You can chain these functions for multi-layered math.

Example: Total Spent Per Customer and Filtering High Spenders

Customer.objects.annotate(
    total_spent=Sum('order__total')
).filter(total_spent__gte=1000)

🔨 8. Complex Math: Expressions & Functions

Django Built-in Math Functions:

Function Purpose
Abs Absolute value (Abs(F('field')))
Ceil / Floor Round up / down (Ceil(F('field')))
Power Exponents (Power(F('field'), 2))
Sqrt Square root (Sqrt(F('field')))
Log, Exp Logarithm, Exponentiation

Example: Calculate Compound Interest

from django.db.models.functions import Power

Account.objects.annotate(
    future_value=F('balance') * Power(1.05, F('years'))
)

🕵️ 9. Q Objects (AND/OR/NOT Conditions)

Q() objects allow complex WHERE logic.

Example: Math in Filters

from django.db.models import Q

Product.objects.filter(
    Q(price__gte=100) | Q(stock__lte=10)
)

Example: Sales Threshold

Employee.objects.filter(
    Q(sales__gte=100) & Q(region='East')
)

📈 10. Performance Tips with ORM Math

Tip Why
Use F() expressions Database-side math is faster
Combine annotate() + aggregate() Reduce query round trips
Use select_related() / prefetch_related() Reduce N+1 queries
Add indexes Speed up filtering and ordering
Profile your queries django-debug-toolbar, EXPLAIN
Avoid unnecessary fields Use only() or values()

Summary of Django Query Math Tools

Tool Use
F() Refer to other fields, arithmetic in DB
annotate() Add calculated fields to each row
aggregate() Calculate sums, averages, counts across all rows
Case / When Conditional math and logic
Window Rankings, cumulative sums, per-group aggregates
Subquery / OuterRef Correlated subqueries for row-level math
Math Functions Abs, Power, Ceil, Floor, Log, Exp
Q() Complex query conditions (AND, OR, NOT)

⚡ Real-World Scenarios

Task Solution
Discount based on quantity Case + When + F()
Sales leaderboard Window + Rank
Latest related record field OuterRef + Subquery
Customer lifetime value annotate(Sum(...))
Running totals by date Window(Sum(...))
Tiered commissions Case + When + annotate()
Back to top