Plotly Dash
1. Why Use Plotly Dash?
- No Frontend Experience Required: Create web applications with just Python.
- High-Quality Visualizations: Built on Plotly.js, which is known for its publication-quality visualizations.
- Interactive Dashboards: Easily add complex interactions and live updates.
- Full Customization: Use HTML, CSS, and JavaScript for extensive customization.
- Enterprise Ready: Scalable from simple prototypes to large enterprise applications.
2. Key Concepts and Components
2.1. Dash Application Structure
A basic Dash application consists of: - Layout: Defines the visual structure using Dash components. - Callbacks: Control interactivity and data flow within the app. - Server: The underlying Flask server that serves the application.
2.2. Core Components
Dash provides a suite of UI components: - Dash Core Components (dcc
): - Graphs (dcc.Graph
) - Dropdowns (dcc.Dropdown
) - Sliders (dcc.Slider
) - Date Pickers (dcc.DatePickerSingle
, dcc.DatePickerRange
) - Tabs (dcc.Tabs
) - Dash HTML Components (html
): - Divs (html.Div
) - Paragraphs (html.P
) - Buttons (html.Button
) - Images (html.Img
) - Dash Bootstrap Components (dbc
): - Pre-styled components using Bootstrap. - Cards, Alerts, Navbar, Forms, and more.
2.3. Callbacks
Callbacks make Dash applications interactive. They are: - Input: Triggers the callback when the value changes. - Output: Defines the component property to be updated. - State: Holds state information without triggering the callback.
2.4. Graphing Library
Plotly Dash uses Plotly.js for rendering graphs: - Over 40 chart types: line, bar, pie, scatter, heatmap, box plots, 3D charts, and more. - Customizable layout and styling using plotly.graph_objects
.
3. Getting Started with Dash
3.1. Installation
pip install dash
For Bootstrap components:
pip install dash-bootstrap-components
3.2. Basic Application Example
# app.py
import dash
from dash import dcc, html
import plotly.express as px
from dash.dependencies import Input, Output
# Initialize the Dash app
= dash.Dash(__name__)
app
# Sample DataFrame
import pandas as pd
= pd.DataFrame({
df 'Category': ['A', 'B', 'C', 'D'],
'Values': [10, 20, 15, 30]
})
# Layout of the App
= html.Div([
app.layout 'Simple Bar Chart Example'),
html.H1(
dcc.Graph(id='bar-chart',
=px.bar(df, x='Category', y='Values', title="Bar Chart Example")
figure
),
])
if __name__ == '__main__':
=True) app.run_server(debug
- Run the app:
python app.py
- Open in browser:
http://127.0.0.1:8050
4. Layout and Styling
4.1. Layout with HTML Components
= html.Div([
app.layout 'Dashboard Title', style={'textAlign': 'center'}),
html.H1(
html.Div([
dcc.Dropdown(id='dropdown',
=[
options'label': 'Option 1', 'value': 'opt1'},
{'label': 'Option 2', 'value': 'opt2'}
{
],='opt1'
value
)={'width': '50%', 'margin': 'auto'}),
], style ])
4.2. Styling with CSS
- Inline Styles: Use
style
attribute in components. - External Stylesheets:
= dash.Dash(__name__, external_stylesheets=[
app "https://stackpath.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css"
])
- Local Stylesheets: Place CSS files in
assets
folder. Dash automatically loads them.
4.3. Using Dash Bootstrap Components
import dash_bootstrap_components as dbc
= dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
app
= dbc.Container([
app.layout
dbc.Row(['Bootstrap Dashboard'), width=12)
dbc.Col(html.H1(
]),
dbc.Row([id='example-graph'), width=8),
dbc.Col(dcc.Graph(
dbc.Col(['Sidebar'),
html.H3('Additional Info')
html.P(=4)
], width
]) ])
5. Interactivity with Callbacks
5.1. Simple Callback Example
@app.callback(
'output-div', 'children'),
Output('input-text', 'value')
Input(
)def update_output(value):
return f'You entered: {value}'
5.2. Multiple Inputs and Outputs
@app.callback(
'output-div', 'children'),
Output('dropdown', 'value'),
[Input('slider', 'value')]
Input(
)def update_output(dropdown_value, slider_value):
return f'Selected: {dropdown_value}, Slider Value: {slider_value}'
5.3. Using State
@app.callback(
'output-div', 'children'),
Output('submit-button', 'n_clicks'),
Input('input-text', 'value')
State(
)def update_output(n_clicks, value):
if n_clicks:
return f'You entered: {value}'
6. Advanced Features
6.1. Live Updates with Interval Component
dcc.Interval(id='interval-component',
=60*1000, # 1 minute in milliseconds
interval=0
n_intervals )
6.2. Multi-Page Layouts
Use dcc.Location
and multiple layouts:
id='url', refresh=False),
dcc.Location(id='page-content') html.Div(
6.3. Integrating Dash in Django
Using
django-plotly-dash
Package:bash pip install django-plotly-dash
Settings Configuration: ```python INSTALLED_APPS = [ ‘django_plotly_dash.apps.DjangoPlotlyDashConfig’, ‘dpd_static_support’, ‘channels’, ]
ASGI_APPLICATION = ‘myproject.asgi.application’ CHANNEL_LAYERS = { “default”: { “BACKEND”: “channels.layers.InMemoryChannelLayer” } } ```
Embedding in Template:
html {% load plotly_dash %} <div class="container"> {% plotly_dash_app name="TransactionGraph" %} </div>
7. Deployment and Hosting
7.1. Gunicorn and Nginx
- Install Gunicorn:
pip install gunicorn
- Run with Gunicorn:
gunicorn app:server
- Configure Nginx:
server {
listen 80;
server_name mydomain.com;
location / {
proxy_pass http://localhost:8050;
proxy_set_header Host $host;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
}
}
7.2. Cloud Hosting
- Heroku: Free and easy deployment.
- AWS Elastic Beanstalk: For scalable deployments.
- Google Cloud Run: Serverless containerized apps.
8. Plotly Dash vs Alternatives
Feature | Plotly Dash | Streamlit | Gradio |
---|---|---|---|
Purpose | Advanced dashboards | Rapid prototypes | ML demos |
Ease of Use | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ |
Customization | ⭐⭐⭐⭐⭐ | ⭐⭐ | ⭐⭐ |
Deployment | Enterprise-grade | Simple hosting | Separate app |
Best For | Data-driven apps | MVPs and internal tools | ML models and demos |