Plotly Dash
1. Why Use Plotly Dash?
- No Frontend Experience Required: Create web applications with just Python.
- High-Quality Visualizations: Built on Plotly.js, which is known for its publication-quality visualizations.
- Interactive Dashboards: Easily add complex interactions and live updates.
- Full Customization: Use HTML, CSS, and JavaScript for extensive customization.
- Enterprise Ready: Scalable from simple prototypes to large enterprise applications.
2. Key Concepts and Components
2.1. Dash Application Structure
A basic Dash application consists of: - Layout: Defines the visual structure using Dash components. - Callbacks: Control interactivity and data flow within the app. - Server: The underlying Flask server that serves the application.
2.2. Core Components
Dash provides a suite of UI components: - Dash Core Components (dcc): - Graphs (dcc.Graph) - Dropdowns (dcc.Dropdown) - Sliders (dcc.Slider) - Date Pickers (dcc.DatePickerSingle, dcc.DatePickerRange) - Tabs (dcc.Tabs) - Dash HTML Components (html): - Divs (html.Div) - Paragraphs (html.P) - Buttons (html.Button) - Images (html.Img) - Dash Bootstrap Components (dbc): - Pre-styled components using Bootstrap. - Cards, Alerts, Navbar, Forms, and more.
2.3. Callbacks
Callbacks make Dash applications interactive. They are: - Input: Triggers the callback when the value changes. - Output: Defines the component property to be updated. - State: Holds state information without triggering the callback.
2.4. Graphing Library
Plotly Dash uses Plotly.js for rendering graphs: - Over 40 chart types: line, bar, pie, scatter, heatmap, box plots, 3D charts, and more. - Customizable layout and styling using plotly.graph_objects.
3. Getting Started with Dash
3.1. Installation
pip install dashFor Bootstrap components:
pip install dash-bootstrap-components3.2. Basic Application Example
# app.py
import dash
from dash import dcc, html
import plotly.express as px
from dash.dependencies import Input, Output
# Initialize the Dash app
app = dash.Dash(__name__)
# Sample DataFrame
import pandas as pd
df = pd.DataFrame({
'Category': ['A', 'B', 'C', 'D'],
'Values': [10, 20, 15, 30]
})
# Layout of the App
app.layout = html.Div([
html.H1('Simple Bar Chart Example'),
dcc.Graph(
id='bar-chart',
figure=px.bar(df, x='Category', y='Values', title="Bar Chart Example")
),
])
if __name__ == '__main__':
app.run_server(debug=True)- Run the app:
python app.py- Open in browser:
http://127.0.0.1:8050
4. Layout and Styling
4.1. Layout with HTML Components
app.layout = html.Div([
html.H1('Dashboard Title', style={'textAlign': 'center'}),
html.Div([
dcc.Dropdown(
id='dropdown',
options=[
{'label': 'Option 1', 'value': 'opt1'},
{'label': 'Option 2', 'value': 'opt2'}
],
value='opt1'
)
], style={'width': '50%', 'margin': 'auto'}),
])4.2. Styling with CSS
- Inline Styles: Use
styleattribute in components. - External Stylesheets:
app = dash.Dash(__name__, external_stylesheets=[
"https://stackpath.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css"
])- Local Stylesheets: Place CSS files in
assetsfolder. Dash automatically loads them.
4.3. Using Dash Bootstrap Components
import dash_bootstrap_components as dbc
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
app.layout = dbc.Container([
dbc.Row([
dbc.Col(html.H1('Bootstrap Dashboard'), width=12)
]),
dbc.Row([
dbc.Col(dcc.Graph(id='example-graph'), width=8),
dbc.Col([
html.H3('Sidebar'),
html.P('Additional Info')
], width=4)
])
])5. Interactivity with Callbacks
5.1. Simple Callback Example
@app.callback(
Output('output-div', 'children'),
Input('input-text', 'value')
)
def update_output(value):
return f'You entered: {value}'5.2. Multiple Inputs and Outputs
@app.callback(
Output('output-div', 'children'),
[Input('dropdown', 'value'),
Input('slider', 'value')]
)
def update_output(dropdown_value, slider_value):
return f'Selected: {dropdown_value}, Slider Value: {slider_value}'5.3. Using State
@app.callback(
Output('output-div', 'children'),
Input('submit-button', 'n_clicks'),
State('input-text', 'value')
)
def update_output(n_clicks, value):
if n_clicks:
return f'You entered: {value}'6. Advanced Features
6.1. Live Updates with Interval Component
dcc.Interval(
id='interval-component',
interval=60*1000, # 1 minute in milliseconds
n_intervals=0
)6.2. Multi-Page Layouts
Use dcc.Location and multiple layouts:
dcc.Location(id='url', refresh=False),
html.Div(id='page-content')6.3. Integrating Dash in Django
Using
django-plotly-dashPackage:bash pip install django-plotly-dashSettings Configuration: ```python INSTALLED_APPS = [ ‘django_plotly_dash.apps.DjangoPlotlyDashConfig’, ‘dpd_static_support’, ‘channels’, ]
ASGI_APPLICATION = ‘myproject.asgi.application’ CHANNEL_LAYERS = { “default”: { “BACKEND”: “channels.layers.InMemoryChannelLayer” } } ```
Embedding in Template:
html {% load plotly_dash %} <div class="container"> {% plotly_dash_app name="TransactionGraph" %} </div>
7. Deployment and Hosting
7.1. Gunicorn and Nginx
- Install Gunicorn:
pip install gunicorn- Run with Gunicorn:
gunicorn app:server- Configure Nginx:
server {
listen 80;
server_name mydomain.com;
location / {
proxy_pass http://localhost:8050;
proxy_set_header Host $host;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
}
}
7.2. Cloud Hosting
- Heroku: Free and easy deployment.
- AWS Elastic Beanstalk: For scalable deployments.
- Google Cloud Run: Serverless containerized apps.
8. Plotly Dash vs Alternatives
| Feature | Plotly Dash | Streamlit | Gradio |
|---|---|---|---|
| Purpose | Advanced dashboards | Rapid prototypes | ML demos |
| Ease of Use | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ |
| Customization | ⭐⭐⭐⭐⭐ | ⭐⭐ | ⭐⭐ |
| Deployment | Enterprise-grade | Simple hosting | Separate app |
| Best For | Data-driven apps | MVPs and internal tools | ML models and demos |