Plotly Dash

Plotly Dash is an open-source Python framework for building interactive web applications, especially dashboards, data visualizations, and analytical interfaces. It is built on top of Flask, Plotly.js, and React.js, enabling developers to create visually appealing, fully interactive applications with minimal code.
Author

Benedict Thekkel

1. Why Use Plotly Dash?

  • No Frontend Experience Required: Create web applications with just Python.
  • High-Quality Visualizations: Built on Plotly.js, which is known for its publication-quality visualizations.
  • Interactive Dashboards: Easily add complex interactions and live updates.
  • Full Customization: Use HTML, CSS, and JavaScript for extensive customization.
  • Enterprise Ready: Scalable from simple prototypes to large enterprise applications.

2. Key Concepts and Components

2.1. Dash Application Structure

A basic Dash application consists of: - Layout: Defines the visual structure using Dash components. - Callbacks: Control interactivity and data flow within the app. - Server: The underlying Flask server that serves the application.

2.2. Core Components

Dash provides a suite of UI components: - Dash Core Components (dcc): - Graphs (dcc.Graph) - Dropdowns (dcc.Dropdown) - Sliders (dcc.Slider) - Date Pickers (dcc.DatePickerSingle, dcc.DatePickerRange) - Tabs (dcc.Tabs) - Dash HTML Components (html): - Divs (html.Div) - Paragraphs (html.P) - Buttons (html.Button) - Images (html.Img) - Dash Bootstrap Components (dbc): - Pre-styled components using Bootstrap. - Cards, Alerts, Navbar, Forms, and more.

2.3. Callbacks

Callbacks make Dash applications interactive. They are: - Input: Triggers the callback when the value changes. - Output: Defines the component property to be updated. - State: Holds state information without triggering the callback.

2.4. Graphing Library

Plotly Dash uses Plotly.js for rendering graphs: - Over 40 chart types: line, bar, pie, scatter, heatmap, box plots, 3D charts, and more. - Customizable layout and styling using plotly.graph_objects.


3. Getting Started with Dash

3.1. Installation

pip install dash

For Bootstrap components:

pip install dash-bootstrap-components

3.2. Basic Application Example

# app.py
import dash
from dash import dcc, html
import plotly.express as px
from dash.dependencies import Input, Output

# Initialize the Dash app
app = dash.Dash(__name__)

# Sample DataFrame
import pandas as pd
df = pd.DataFrame({
    'Category': ['A', 'B', 'C', 'D'],
    'Values': [10, 20, 15, 30]
})

# Layout of the App
app.layout = html.Div([
    html.H1('Simple Bar Chart Example'),
    dcc.Graph(
        id='bar-chart',
        figure=px.bar(df, x='Category', y='Values', title="Bar Chart Example")
    ),
])

if __name__ == '__main__':
    app.run_server(debug=True)
  • Run the app:
python app.py
  • Open in browser: http://127.0.0.1:8050

4. Layout and Styling

4.1. Layout with HTML Components

app.layout = html.Div([
    html.H1('Dashboard Title', style={'textAlign': 'center'}),
    html.Div([
        dcc.Dropdown(
            id='dropdown',
            options=[
                {'label': 'Option 1', 'value': 'opt1'},
                {'label': 'Option 2', 'value': 'opt2'}
            ],
            value='opt1'
        )
    ], style={'width': '50%', 'margin': 'auto'}),
])

4.2. Styling with CSS

  • Inline Styles: Use style attribute in components.
  • External Stylesheets:
app = dash.Dash(__name__, external_stylesheets=[
    "https://stackpath.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css"
])
  • Local Stylesheets: Place CSS files in assets folder. Dash automatically loads them.

4.3. Using Dash Bootstrap Components

import dash_bootstrap_components as dbc

app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])

app.layout = dbc.Container([
    dbc.Row([
        dbc.Col(html.H1('Bootstrap Dashboard'), width=12)
    ]),
    dbc.Row([
        dbc.Col(dcc.Graph(id='example-graph'), width=8),
        dbc.Col([
            html.H3('Sidebar'),
            html.P('Additional Info')
        ], width=4)
    ])
])

5. Interactivity with Callbacks

5.1. Simple Callback Example

@app.callback(
    Output('output-div', 'children'),
    Input('input-text', 'value')
)
def update_output(value):
    return f'You entered: {value}'

5.2. Multiple Inputs and Outputs

@app.callback(
    Output('output-div', 'children'),
    [Input('dropdown', 'value'),
     Input('slider', 'value')]
)
def update_output(dropdown_value, slider_value):
    return f'Selected: {dropdown_value}, Slider Value: {slider_value}'

5.3. Using State

@app.callback(
    Output('output-div', 'children'),
    Input('submit-button', 'n_clicks'),
    State('input-text', 'value')
)
def update_output(n_clicks, value):
    if n_clicks:
        return f'You entered: {value}'

6. Advanced Features

6.1. Live Updates with Interval Component

dcc.Interval(
    id='interval-component',
    interval=60*1000,  # 1 minute in milliseconds
    n_intervals=0
)

6.2. Multi-Page Layouts

Use dcc.Location and multiple layouts:

dcc.Location(id='url', refresh=False),
html.Div(id='page-content')

6.3. Integrating Dash in Django

  1. Using django-plotly-dash Package: bash pip install django-plotly-dash

  2. Settings Configuration: ```python INSTALLED_APPS = [ ‘django_plotly_dash.apps.DjangoPlotlyDashConfig’, ‘dpd_static_support’, ‘channels’, ]

    ASGI_APPLICATION = ‘myproject.asgi.application’ CHANNEL_LAYERS = { “default”: { “BACKEND”: “channels.layers.InMemoryChannelLayer” } } ```

  3. Embedding in Template: html {% load plotly_dash %} <div class="container"> {% plotly_dash_app name="TransactionGraph" %} </div>


7. Deployment and Hosting

7.1. Gunicorn and Nginx

  • Install Gunicorn:
pip install gunicorn
  • Run with Gunicorn:
gunicorn app:server
  • Configure Nginx:
server {
    listen 80;
    server_name mydomain.com;

    location / {
        proxy_pass http://localhost:8050;
        proxy_set_header Host $host;
        proxy_http_version 1.1;
        proxy_set_header Upgrade $http_upgrade;
        proxy_set_header Connection "Upgrade";
    }
}

7.2. Cloud Hosting

  • Heroku: Free and easy deployment.
  • AWS Elastic Beanstalk: For scalable deployments.
  • Google Cloud Run: Serverless containerized apps.

8. Plotly Dash vs Alternatives

Feature Plotly Dash Streamlit Gradio
Purpose Advanced dashboards Rapid prototypes ML demos
Ease of Use ⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐⭐
Customization ⭐⭐⭐⭐⭐ ⭐⭐ ⭐⭐
Deployment Enterprise-grade Simple hosting Separate app
Best For Data-driven apps MVPs and internal tools ML models and demos

Back to top