Streamlit

Streamlit
Author

Benedict Thekkel

!pip list | grep streamlit
streamlit                           1.33.0

Display text

import streamlit as st
import pandas as pd
import numpy as np
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[3], line 1
----> 1 import streamlit as st
      2 import pandas as pd
      3 import numpy as np

File ~/BENEDICT_Only/Benedict_Projects/Benedict_Webdevelopment/webdevelopment_doc/nbs/streamlit.py:5
      2 import pandas as pd
      3 import numpy as np
----> 5 st.title('Uber pickups in NYC')
      7 DATE_COLUMN = 'date/time'
      8 DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
      9             'streamlit-demo-data/uber-raw-data-sep14.csv.gz')

AttributeError: partially initialized module 'streamlit' has no attribute 'title' (most likely due to a circular import)
st.text('Fixed width text')
st.markdown('_Markdown_') # see #*
st.caption('Balloons. Hundreds of them...')
st.latex(r''' e^{i\pi} + 1 = 0 ''')
st.write('Most objects') # df, err, func, keras!
st.write(['st', 'is <', 3]) # see *
st.title('My title')
st.header('My header')
st.subheader('My sub')
st.code('for i in range(8): foo()')

# * optional kwarg unsafe_allow_html = True

Display text

st.dataframe(my_dataframe)
st.table(data.iloc[0:10])
st.json({'foo':'bar','fu':'ba'})
st.metric(label="Temp", value="273 K", delta="1.2 K")

Display media

st.image('./header.png')
st.audio(data)
st.video(data)

Columns

col1, col2 = st.columns(2)
col1.write('Column 1')
col2.write('Column 2')

# Three columns with different widths
col1, col2, col3 = st.columns([3,1,1])
# col1 is wider

# Using 'with' notation:
>>> with col1:
>>>     st.write('This is column 1')

Tabs

# Insert containers separated into tabs:
>>> tab1, tab2 = st.tabs(["Tab 1", "Tab2"])
>>> tab1.write("this is tab 1")
>>> tab2.write("this is tab 2")

# You can also use "with" notation:
>>> with tab1:
>>>   st.radio('Select one:', [1, 2])

Control flow

# Stop execution immediately:
st.stop()
# Rerun script immediately:
st.experimental_rerun()

# Group multiple widgets:
>>> with st.form(key='my_form'):
>>>   username = st.text_input('Username')
>>>   password = st.text_input('Password')
>>>   st.form_submit_button('Login')

Personalize apps for users

# Show different content based on the user's email address.
>>> if st.user.email == 'jane@email.com':
>>>    display_jane_content()
>>> elif st.user.email == 'adam@foocorp.io':
>>>    display_adam_content()
>>> else:
>>>    st.write("Please contact us to get access!")

Display interactive widgets

st.button('Hit me')
st.data_editor('Edit data', data)
st.checkbox('Check me out')
st.radio('Pick one:', ['nose','ear'])
st.selectbox('Select', [1,2,3])
st.multiselect('Multiselect', [1,2,3])
st.slider('Slide me', min_value=0, max_value=10)
st.select_slider('Slide to select', options=[1,'2'])
st.text_input('Enter some text')
st.number_input('Enter a number')
st.text_area('Area for textual entry')
st.date_input('Date input')
st.time_input('Time entry')
st.file_uploader('File uploader')
st.download_button('On the dl', data)
st.camera_input("一二三,茄子!")
st.color_picker('Pick a color')
# Use widgets' returned values in variables
>>> for i in range(int(st.number_input('Num:'))): foo()
>>> if st.sidebar.selectbox('I:',['f']) == 'f': b()
>>> my_slider_val = st.slider('Quinn Mallory', 1, 88)
>>> st.write(slider_val)
# Disable widgets to remove interactivity:
>>> st.slider('Pick a number', 0, 100, disabled=True)

Build chat-based apps

# Insert a chat message container.
>>> with st.chat_message("user"):
>>>    st.write("Hello 👋")
>>>    st.line_chart(np.random.randn(30, 3))

# Display a chat input widget.
>>> st.chat_input("Say something")

Mutate data

# Add rows to a dataframe after
# showing it.
>>> element = st.dataframe(df1)
>>> element.add_rows(df2)

# Add rows to a chart after
# showing it.
>>> element = st.line_chart(df1)
>>> element.add_rows(df2)

Display code

st.echo()
>>> with st.echo():
>>>     st.write('Code will be executed and printed')

Placeholders, help, and options

# Replace any single element.
>>> element = st.empty()
>>> element.line_chart(...)
>>> element.text_input(...)  # Replaces previous.

# Insert out of order.
>>> elements = st.container()
>>> elements.line_chart(...)
>>> st.write("Hello")
>>> elements.text_input(...)  # Appears above "Hello".

st.help(pandas.DataFrame)
st.get_option(key)
st.set_option(key, value)
st.set_page_config(layout='wide')
st.experimental_show(objects)
st.experimental_get_query_params()
st.experimental_set_query_params(**params)

Connect to data sources

st.experimental_connection('pets_db', type='sql')
conn = st.experimental_connection('sql')
conn = st.experimental_connection('snowpark')

>>> class MyConnection(ExperimentalBaseConnection[myconn.MyConnection]):
>>>    def _connect(self, **kwargs) -> MyConnection:
>>>        return myconn.connect(**self._secrets, **kwargs)
>>>    def query(self, query):
>>>       return self._instance.query(query)

Optimize performance

# E.g. Dataframe computation, storing downloaded data, etc.
>>> @st.cache_data
... def foo(bar):
...   # Do something expensive and return data
...   return data
# Executes foo
>>> d1 = foo(ref1)
# Does not execute foo
# Returns cached item by value, d1 == d2
>>> d2 = foo(ref1)
# Different arg, so function foo executes
>>> d3 = foo(ref2)
# Clear all cached entries for this function
>>> foo.clear()
# Clear values from *all* in-memory or on-disk cached functions
>>> st.cache_data.clear()

Cache global resources

# E.g. TensorFlow session, database connection, etc.
>>> @st.cache_resource
... def foo(bar):
...   # Create and return a non-data object
...   return session
# Executes foo
>>> s1 = foo(ref1)
# Does not execute foo
# Returns cached item by reference, s1 == s2
>>> s2 = foo(ref1)
# Different arg, so function foo executes
>>> s3 = foo(ref2)
# Clear all cached entries for this function
>>> foo.clear()
# Clear all global resources from cache
>>> st.cache_resource.clear()

Deprecated caching

>>> @st.cache
... def foo(bar):
...   # Do something expensive in here...
...   return data
>>> # Executes foo
>>> d1 = foo(ref1)
>>> # Does not execute foo
>>> # Returns cached item by reference, d1 == d2
>>> d2 = foo(ref1)
>>> # Different arg, so function foo executes
>>> d3 = foo(ref2)

Display progress and status

# Show a spinner during a process
>>> with st.spinner(text='In progress'):
>>>   time.sleep(3)
>>>   st.success('Done')

# Show and update progress bar
>>> bar = st.progress(50)
>>> time.sleep(3)
>>> bar.progress(100)

st.balloons()
st.snow()
st.toast('Mr Stay-Puft')
st.error('Error message')
st.warning('Warning message')
st.info('Info message')
st.success('Success message')
st.exception(e)

Examples

!cat streamlit.py
import streamlit as st
import pandas as pd
import numpy as np

st.title('Uber pickups in NYC')

DATE_COLUMN = 'date/time'
DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
            'streamlit-demo-data/uber-raw-data-sep14.csv.gz')

@st.cache_data
def load_data(nrows):
    data = pd.read_csv(DATA_URL, nrows=nrows)
    lowercase = lambda x: str(x).lower()
    data.rename(lowercase, axis='columns', inplace=True)
    data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
    return data

data_load_state = st.text('Loading data...')
data = load_data(10000)
data_load_state.text("Done! (using st.cache_data)")

if st.checkbox('Show raw data'):
    st.subheader('Raw data')
    st.write(data)

st.subheader('Number of pickups by hour')
hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0]
st.bar_chart(hist_values)

# Some number in the range 0-23
hour_to_filter = st.slider('hour', 0, 23, 17)
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]

st.subheader('Map of all pickups at %s:00' % hour_to_filter)
st.map(filtered_data)
!cat Streamlit_app/Hello.py
import streamlit as st

st.set_page_config(
    page_title="Hello",
    page_icon="👋",
)

st.write("# Welcome to Streamlit! 👋")

st.sidebar.success("Select a demo above.")

st.markdown(
    """
    Streamlit is an open-source app framework built specifically for
    Machine Learning and Data Science projects.
    **👈 Select a demo from the sidebar** to see some examples
    of what Streamlit can do!
    ### Want to learn more?
    - Check out [streamlit.io](https://streamlit.io)
    - Jump into our [documentation](https://docs.streamlit.io)
    - Ask a question in our [community
        forums](https://discuss.streamlit.io)
    ### See more complex demos
    - Use a neural net to [analyze the Udacity Self-driving Car Image
        Dataset](https://github.com/streamlit/demo-self-driving)
    - Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
"""
)
!cat Streamlit_app/pages/1_Plotting_Demo.py
import streamlit as st
import time
import numpy as np

st.set_page_config(page_title="Plotting Demo", page_icon="📈")

st.markdown("# Plotting Demo")
st.sidebar.header("Plotting Demo")
st.write(
    """This demo illustrates a combination of plotting and animation with
Streamlit. We're generating a bunch of random numbers in a loop for around
5 seconds. Enjoy!"""
)

progress_bar = st.sidebar.progress(0)
status_text = st.sidebar.empty()
last_rows = np.random.randn(1, 1)
chart = st.line_chart(last_rows)

for i in range(1, 101):
    new_rows = last_rows[-1, :] + np.random.randn(5, 1).cumsum(axis=0)
    status_text.text("%i%% Complete" % i)
    chart.add_rows(new_rows)
    progress_bar.progress(i)
    last_rows = new_rows
    time.sleep(0.05)

progress_bar.empty()

# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")
!cat Streamlit_app/pages/2_Mapping_Demo.py
import streamlit as st
import pandas as pd
import pydeck as pdk
from urllib.error import URLError

st.set_page_config(page_title="Mapping Demo", page_icon="🌍")

st.markdown("# Mapping Demo")
st.sidebar.header("Mapping Demo")
st.write(
    """This demo shows how to use
[`st.pydeck_chart`](https://docs.streamlit.io/develop/api-reference/charts/st.pydeck_chart)
to display geospatial data."""
)


@st.cache_data
def from_data_file(filename):
    url = (
        "http://raw.githubusercontent.com/streamlit/"
        "example-data/master/hello/v1/%s" % filename
    )
    return pd.read_json(url)


try:
    ALL_LAYERS = {
        "Bike Rentals": pdk.Layer(
            "HexagonLayer",
            data=from_data_file("bike_rental_stats.json"),
            get_position=["lon", "lat"],
            radius=200,
            elevation_scale=4,
            elevation_range=[0, 1000],
            extruded=True,
        ),
        "Bart Stop Exits": pdk.Layer(
            "ScatterplotLayer",
            data=from_data_file("bart_stop_stats.json"),
            get_position=["lon", "lat"],
            get_color=[200, 30, 0, 160],
            get_radius="[exits]",
            radius_scale=0.05,
        ),
        "Bart Stop Names": pdk.Layer(
            "TextLayer",
            data=from_data_file("bart_stop_stats.json"),
            get_position=["lon", "lat"],
            get_text="name",
            get_color=[0, 0, 0, 200],
            get_size=15,
            get_alignment_baseline="'bottom'",
        ),
        "Outbound Flow": pdk.Layer(
            "ArcLayer",
            data=from_data_file("bart_path_stats.json"),
            get_source_position=["lon", "lat"],
            get_target_position=["lon2", "lat2"],
            get_source_color=[200, 30, 0, 160],
            get_target_color=[200, 30, 0, 160],
            auto_highlight=True,
            width_scale=0.0001,
            get_width="outbound",
            width_min_pixels=3,
            width_max_pixels=30,
        ),
    }
    st.sidebar.markdown("### Map Layers")
    selected_layers = [
        layer
        for layer_name, layer in ALL_LAYERS.items()
        if st.sidebar.checkbox(layer_name, True)
    ]
    if selected_layers:
        st.pydeck_chart(
            pdk.Deck(
                map_style="mapbox://styles/mapbox/light-v9",
                initial_view_state={
                    "latitude": 37.76,
                    "longitude": -122.4,
                    "zoom": 11,
                    "pitch": 50,
                },
                layers=selected_layers,
            )
        )
    else:
        st.error("Please choose at least one layer above.")
except URLError as e:
    st.error(
        """
        **This demo requires internet access.**
        Connection error: %s
    """
        % e.reason
    )
!cat Streamlit_app/pages/3_DataFrame_Demo.py
import streamlit as st
import pandas as pd
import altair as alt
from urllib.error import URLError

st.set_page_config(page_title="DataFrame Demo", page_icon="📊")

st.markdown("# DataFrame Demo")
st.sidebar.header("DataFrame Demo")
st.write(
    """This demo shows how to use `st.write` to visualize Pandas DataFrames.
(Data courtesy of the [UN Data Explorer](http://data.un.org/Explorer.aspx).)"""
)


@st.cache_data
def get_UN_data():
    AWS_BUCKET_URL = "http://streamlit-demo-data.s3-us-west-2.amazonaws.com"
    df = pd.read_csv(AWS_BUCKET_URL + "/agri.csv.gz")
    return df.set_index("Region")


try:
    df = get_UN_data()
    countries = st.multiselect(
        "Choose countries", list(df.index), ["China", "United States of America"]
    )
    if not countries:
        st.error("Please select at least one country.")
    else:
        data = df.loc[countries]
        data /= 1000000.0
        st.write("### Gross Agricultural Production ($B)", data.sort_index())

        data = data.T.reset_index()
        data = pd.melt(data, id_vars=["index"]).rename(
            columns={"index": "year", "value": "Gross Agricultural Product ($B)"}
        )
        chart = (
            alt.Chart(data)
            .mark_area(opacity=0.3)
            .encode(
                x="year:T",
                y=alt.Y("Gross Agricultural Product ($B):Q", stack=None),
                color="Region:N",
            )
        )
        st.altair_chart(chart, use_container_width=True)
except URLError as e:
    st.error(
        """
        **This demo requires internet access.**
        Connection error: %s
    """
        % e.reason
    )
Back to top