Python Class

Python class
Author

Benedict Thekkel

Scopes and Namespaces Example

def scope_test():
    def do_local():
        spam = "local spam"

    def do_nonlocal():
        nonlocal spam
        spam = "nonlocal spam"

    def do_global():
        global spam
        spam = "global spam"

    spam = "test spam"
    do_local()
    print("After local assignment:", spam)
    do_nonlocal()
    print("After nonlocal assignment:", spam)
    do_global()
    print("After global assignment:", spam)

scope_test()
print("In global scope:", spam)
After local assignment: test spam
After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

Class Syntax

class ClassName:
    <statement-1>
    .
    .
    .
    <statement-N>

The self Parameter

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def myfunc(self):
        print("Hello my name is " + self.name)

p1 = Person("John", 36)
p1.myfunc()
Hello my name is John
class Person:
    def __init__(mysillyobject, name, age):
        mysillyobject.name = name
        mysillyobject.age = age

    def myfunc(abc):
        print("Hello my name is " + abc.name)

p1 = Person("John", 36)
p1.myfunc()
Hello my name is John

The pass Statement

class definitions cannot be empty, but if you for some reason have a class definition with no content, put in the pass statement to avoid getting an error.

class Person:
    pass

__init__

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with instances customized to a specific initial state. Therefore a class may define a special method named init(), like this:

def __init__(self):
    self.data = []
class Complex:
    def __init__(self, realpart, imagpart):
        self.r = realpart
        self.i = imagpart

x = Complex(3.0, -4.5)

x.r, x.i
(3.0, -4.5)

__new__

When you create a new object by calling the class, Python calls the new() method to create the object first and then calls the init() method to initialize the object’s attributes.

class Person:
    def __new__(cls, name):
        print(f'Creating a new {cls.__name__} object...')
        obj = object.__new__(cls)
        return obj

    def __init__(self, name):
        print(f'Initializing the person object...')
        self.name = name


person = Person('John')
Creating a new Person object...
Initializing the person object...
x.counter = 1
while x.counter < 10:
    x.counter = x.counter * 2
print(x.counter)
del x.counter
16
class Dog:

    tricks = []             # mistaken use of a class variable

    def __init__(self, name):
        self.name = name

    def add_trick(self, trick):
        self.tricks.append(trick)

d = Dog('Fido')
e = Dog('Buddy')
d.add_trick('roll over')
e.add_trick('play dead')
d.tricks                # unexpectedly shared by all dogs
['roll over', 'play dead']
class Dog:

    def __init__(self, name):
        self.name = name
        self.tricks = []    # creates a new empty list for each dog

    def add_trick(self, trick):
        self.tricks.append(trick)

d = Dog('Fido')
e = Dog('Buddy')
d.add_trick('roll over')
e.add_trick('play dead')
d.tricks
['roll over']
e.tricks
['play dead']

Methods may call other methods by using method attributes of the self argument:

class Bag:
    def __init__(self):
        self.data = []

    def add(self, x):
        self.data.append(x)

    def addtwice(self, x):
        self.add(x)
        self.add(x)

__iter__ & __next__

class Reverse:
    """Iterator for looping over a sequence backwards."""
    def __init__(self, data):
        self.data = data
        self.index = len(self.data)

    def __iter__(self):
        return self

    def __next__(self):
        if self.index == 0:
            self.index = len(self.data)
            raise StopIteration
        self.index = self.index - 1
        return self.data[self.index]
rev = Reverse('spam')

iter(rev)
<__main__.Reverse>
for char in rev:
    print(char)
m
a
p
s
s = 'abc'

it = iter(s)

it
<str_ascii_iterator>
def reverse(data):
    for index in range(len(data)-1, -1, -1):
        yield data[index]
        

for char in reverse('golf'):
    print(char)
f
l
o
g

Anything that can be done with generators can also be done with class-based iterators as described in the previous section. What makes generators so compact is that the iter() and next() methods are created automatically.

__str__

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

p1 = Person("John", 36)

print(p1)
<__main__.Person object>
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __str__(self):
        return f"{self.name}({self.age})"

p1 = Person("John", 36)

print(p1)
John(36)

__repr__

class Person:
    def __init__(self, first_name, last_name, age):
        self.first_name = first_name
        self.last_name = last_name
        self.age = age
person = Person('John', 'Doe', 25)
print(repr(person))
<__main__.Person object>
class Person:
    def __init__(self, first_name, last_name, age):
        self.first_name = first_name
        self.last_name = last_name
        self.age = age
        
    def __str__(self):
        return f'str: {self.first_name}","{self.last_name}",{self.age}'

    def __repr__(self):
        return f'repr: ("{self.first_name}","{self.last_name}",{self.age})'
    
    def __call__(self):
        return f"call: {self.__dict__}"
person = Person("John", "Doe", 25)
print(person)
str: John","Doe",25
print(repr(person))
repr: ("John","Doe",25)
person
repr: ("John","Doe",25)
person()
"call: {'first_name': 'John', 'last_name': 'Doe', 'age': 25}"

str vs repr

The main difference between str and repr method is intended audiences.

The str method returns a string representation of an object that is human-readable while the repr method returns a string representation of an object that is machine-readable.

Summary

  • Implement the repr method to customize the string representation of an object when repr() is called on it.
  • The str calls repr internally by default.

__call__

class Counter:
    def __init__(self):
        self.count = 0

    def increment(self):
        self.count += 1

    def __call__(self):
        self.increment()
        return self.count
count = Counter()
count()
1
count.__dict__
{'count': 1}

__setattr__ & __getattr__

class Person:
    def __init__(self, first_name, last_name, age):
        self.first_name = first_name
        self.last_name = last_name
        self.set_age(age)
        
    def __str__(self):
        return f'str: {self.first_name}","{self.last_name}",{self.age}'

    def __repr__(self):
        return f'repr: ("{self.first_name}","{self.last_name}",{self.age})'
    
    def __call__(self):
        return f"call: {self.__dict__}"
    
    def __getattr__(self, attr):
        print("getting attr")
        try:
            return self.__dict__[attr] 
        except KeyError:
            print(f"Attribute doesn't exist")
    
    
    def __setattr__(self, attr, value):
        print(f"setting attr: class.{attr} = {value}")
        self.__dict__[attr] = value
        
    def set_age(self, age):
        if age <= 0:
            #raise ValueError('The age must be positive')
            print('The age must be positive')
            return
        self._age = age

    def get_age(self):
        return self._age
john = Person('John', 'Doe', 23)
john.set_age(12)
setting attr: class.first_name = John
setting attr: class.last_name = Doe
setting attr: class._age = 23
setting attr: class._age = 12
john.a = 1
setting attr: class.a = 1
john.b
getting attr
Attribute doesn't exist
john.__dict__
{'first_name': 'John', 'last_name': 'Doe', '_age': 12, 'a': 1}
getattr(john, 'b')
getting attr
Attribute doesn't exist

__setitem__ & __getitem__

# Code to demonstrate use 
# of __getitem__() in python 
class Test(object): 
      
    # This function prints the type 
    # of the object passed as well  
    # as the object item 
    def __getitem__(self, items): 
        print (type(items), items) 
  
    # Driver code 
test = Test() 
test[5] 
test[5:65:5] 
test['GeeksforGeeks'] 
test[1, 'x', 10.0] 
test['a':'z':2] 
test[object()]
<class 'int'> 5
<class 'slice'> slice(5, 65, 5)
<class 'str'> GeeksforGeeks
<class 'tuple'> (1, 'x', 10.0)
<class 'slice'> slice('a', 'z', 2)
<class 'object'> <object object>
class Building(object):
    def __init__(self, floors):
        self._floors = [None]*floors
    def __setitem__(self, floor_number, data):
        self._floors[floor_number] = data
    def __getitem__(self, floor_number):
        return self._floors[floor_number]

building1 = Building(4) # Construct a building with 4 floors
building1[0] = 'Reception'
building1[1] = 'ABC Corp'
building1[2] = 'DEF Inc'
print(building1[1])
ABC Corp
class PDFreader:
    ''' Function for reading and displaying pdf files
        ex. path = './Data/<file>.pdf' 
            pdf = PDFreader(path, size = (10, 8))
            pdf[0:5]
    '''
    def __init__(self, path, size = (6, 4)):
        self.filepath = path
        self.images = self.display_pdf_slides()
        self.index = 0
        self.size = size   
        
        
    def __str__(self):
        return f'--string--: path:"{self.filepath}"   index:{self.index}   size:{self.size}   len:{len(self.images)}'

    def __repr__(self):
        return f'--Representation-- \r\npath:"{self.filepath}" \r\nindex:{self.index} \r\nsize:{self.size} \r\nlen:{len(self.images)}'
    
    def __getitem__(self, slide):
        'get slides like indexing a array'
        if isinstance(slide, int):
            self.slides(slice(slide, slide + 1))   
        elif isinstance(slide, slice):
            self.slides(slide)  
            
    
    def slides(self, slide):
        'display the slide as plt.imshow(image)'
        import matplotlib.pyplot as plt

        for i, image in enumerate(self.images[slide]):
            plt.figure(figsize=self.size)
            plt.imshow(image)
            if slide.step == None:
                plt.title(f'Slide {slide.start + i}')
            else:
                plt.title(f'Slide {slide.start + slide.step}')
            plt.axis('off')
        plt.show()

__enter__ & __exit__

class MySecretConnection:
    def __init__(self, url):
        self.url = url

    def __enter__(self):
        print('entering:', self.url)

    def __exit__(self, exc_type, exc_val, exc_tb):
        print('exit:', self.url)


with MySecretConnection('(test)') as finxter:
    # Called finxter.__enter__()
    pass
    # Called finxter.__exit__()
entering: (test)
exit: (test)
class Open_File():
    def __init__(self, filename, mode):
        self.filename = filename
        self.mode = mode
        
    def __enter__(self):
        self.file = open(self.filename, self.mode)
        print('file opened')
        return self.file

    def __exit__(self, exc_type, exc_val, traceback):
        self.file.close()
        print('file closed')
        
with Open_File('Data/sample.txt', 'a') as f:
    f.write('Testing\n\r')
        
print(f.closed)
file opened
file closed
True
from contextlib import contextmanager

@contextmanager
def open_file(file, mode):
    # __enter__ start
    f = open(file, mode)  
    print('file opened')
    # __enter__ end
    yield f
    # __exit__ start
    f.close()
    print('file closed')
    # __exit__ end
    
with open_file('Data/sample.txt', 'a') as f:
    f.write('test text\n\r')
    
print(f.closed)
file opened
file closed
True

__eq__

class Person:
    def __init__(self, first_name, last_name, age):
        self.first_name = first_name
        self.last_name = last_name
        self.age = age
john = Person('John', 'Doe', 25)
jane = Person('Jane', 'Doe', 25)
print(john is jane); print(john == jane); john == jane # False
False
False
False
class Person:
    def __init__(self, first_name, last_name, age):
        self.first_name = first_name
        self.last_name = last_name
        self.age = age

    def __eq__(self, other):
        if isinstance(other, Person):
            return self.age == other.age

        return False
john = Person('John', 'Doe', 25)
jane = Person('Jane', 'Doe', 25)
print(john is jane); print(john == jane); john == jane # False
False
True
True
john = Person('John', 'Doe', 25)
mary = Person('Mary', 'Doe', 27)
print(john is mary); print(john == mary); john == mary # False
False
False
False
john = Person('John', 'Doe', 25)
print(john == 20)
False

__bool__

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __bool__(self):
        if self.age < 18 or self.age > 65:
            return False
        return True



jane = Person('Jane', 19)
bool(jane)
True
bool(jane) is True
True

__len__

a = 'aasd'
len(a)
4
class Person:
    def __init__(self, name):
        self.name = name

    def __len__(self):
        print('len was called...')
        return len(self.name)


ben = Person('ben')
print(bool(ben))  # False

ben.name = ''
print(bool(ben))  # True
len was called...
True
len was called...
False

Summary

  • All objects of custom classes return True by default.
  • Implement the bool method to override the default. The bool method must return either True or False.
  • If a class doesn’t implement the bool method, Python will use the result of the len method. If the class doesn’t implement both methods, the objects will be True by default.

__del__

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __del__(self):
        print('__del__ was called')


person = Person('John Doe', 23)
del person
__del__ was called
person = Person('John Doe', 23)
person = None
__del__ was called

__dict__

Person.__dict__
mappingproxy({'__module__': '__main__',
              '__init__': <function __main__.Person.__init__(self, name, age)>,
              '__del__': <function __main__.Person.__del__(self)>,
              '__dict__': <attribute '__dict__' of 'Person' objects>,
              '__weakref__': <attribute '__weakref__' of 'Person' objects>,
              '__doc__': None})

Python Operator Overloading

class Point2D:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return f'({self.x},{self.y})'

    def __add__(self, point):
        if not isinstance(point, Point2D):
            raise ValueError('The other must be an instance of the Point2D')

        return Point2D(self.x + point.x, self.y + point.y)

    def __sub__(self, point):
        if not isinstance(point, Point2D):
            raise ValueError('The other must be an instance of the Point2D')

        return Point2D(self.x - point.x, self.y - point.y)
    def __mul__(self, point):
        if not isinstance(point, Point2D):
            raise ValueError('The other must be an instance of the Point2D')

        return Point2D(self.x * point.x, self.y * point.y)

    def __and__(self, point):
        return self.__add__(point)


a = Point2D(10, 20)
b = Point2D(15, 25)
c = b - a
b-a, b + a, b * a, b & a
((5,5), (25,45), (150,500), (25,45))

Inheritance

class DerivedClassName(Base1, Base2, Base3):
    <statement-1>
    .
    .
    .
    <statement-N>

Example

class Person:
    def __init__(self, fname, lname):
        self.firstname = fname
        self.lastname = lname
        
    def __str__(self):
        return f"str:{self.lastname}, {self.firstname}"
    
    def __repr__(self):
        return f'Repr: {self.firstname},{self.lastname}'

    def printname(self):
        print(self.firstname, self.lastname)

#Use the Person class to create an object, and then execute the printname method:
x = Person("John", "Doe")
print(x)
str:Doe, John
x
Repr: John,Doe
class Student(Person):
    pass 

x = Student("Mike", "Olsen")
x.printname()
Mike Olsen

The child’s init() function overrides the inheritance of the parent’s init() function.

class Student(Person):
    def __init__(self, fname, lname):
        Person.__init__(self, fname, lname)

Now we have successfully added the init() function, and kept the inheritance of the parent class, and we are ready to add functionality in the init() function.

Python also has a super() function that will make the child class inherit all the methods and properties from its parent:

class Student(Person):
    def __init__(self, fname, lname, year):
        super().__init__(fname, lname)
        self.graduationyear = year

    def welcome(self):
        print("Welcome", self.firstname, self.lastname, "to the class of", self.graduationyear)
x = Student("Mike", "Olsen", 2019) 
x.welcome()
Welcome Mike Olsen to the class of 2019

Property

Getter and setter

class Person:
    def __init__(self, name, age):
        self.name = name
        self.set_age(age)

    def set_age(self, age):
        if age <= 0:
            #raise ValueError('The age must be positive')
            print('The age must be positive')
            return
        self._age = age

    def get_age(self):
        return self._age

john = Person('John', 18)
john.set_age(-19)
print(john.get_age())
The age must be positive
18
john.__dict__
{'name': 'John', '_age': 18}
Person.__dict__
mappingproxy({'__module__': '__main__',
              '__init__': <function __main__.Person.__init__(self, name, age)>,
              'set_age': <function __main__.Person.set_age(self, age)>,
              'get_age': <function __main__.Person.get_age(self)>,
              '__dict__': <attribute '__dict__' of 'Person' objects>,
              '__weakref__': <attribute '__weakref__' of 'Person' objects>,
              '__doc__': None})

The property() has the following parameters:

  • fget is a function to get the value of the attribute, or the getter method.
  • fset is a function to set the value of the attribute, or the setter method.
  • fdel is a function to delete the attribute.
  • doc is a docstring i.e., a comment.
class Person:
    def __init__(self, name, age):
        self.name = name
        self.set_age(age)

    def set_age(self, age):
        if age <= 0:
            #raise ValueError('The age must be positive')
            print('The age must be positive')
            return
        self._age = age

    def get_age(self):
        return self._age
    
    age = property(fget=get_age, fset=set_age)

john = Person('John', 18)
john.age = -19
The age must be positive
john.age
18

Property Decorator

Here’s the syntax of the property class:

class property(fget=None, fset=None, fdel=None, doc=None)

The property() accepts a callable (age) and returns a callable. Therefore, it is a decorator. Therefore, you can use the @property decorator to decorate the age() method as follows:

To assign the set_age to the fset of the age property object, you call the setter() method of the age property object like the following:

class Person:
    def __init__(self, name, age):
        self.name = name
        self._age = age

    @property
    def age(self):
        return self._age

    @age.setter
    def set_age(self, value):
        if value <= 0:
            raise ValueError('The age must be positive')
        self._age = value

Readonly Property

To define a readonly property, you need to create a property with only the getter. However, it is not truly read-only because you can always access the underlying attribute and change it.

import math


class Circle:
    def __init__(self, radius):
        self.radius = radius

    @property
    def area(self):
        return math.pi * self.radius ** 2


c = Circle(10)
print(c.area)
314.1592653589793

Delete Property

from pprint import pprint


class Person:
    def __init__(self, name):
        self._name = name

    @property
    def name(self):
        return self._name

    @name.setter
    def name(self, value):
        if value.strip() == '':
            raise ValueError('name cannot be empty')
        self._name = value

    @name.deleter
    def name(self):
        del self._name
pprint(Person.__dict__)
mappingproxy({'__dict__': <attribute '__dict__' of 'Person' objects>,
              '__doc__': None,
              '__init__': <function Person.__init__>,
              '__module__': '__main__',
              '__weakref__': <attribute '__weakref__' of 'Person' objects>,
              'name': <property object>})
person = Person('John')
person.__class__.__name__
'Person'
pprint(person.__dict__)
{'_name': 'John'}
del person.name
pprint(person.__dict__)
{}

Decorators

Passing the function as an argument

# can be passed as arguments to other functions 
def shout(text): 
    return text.upper() 
 
def whisper(text): 
    return text.lower() 
 
def greet(func): 
    # storing the function in a variable 
    greeting = func("""Hi, I am created by a function passed as an argument.""") 
    print (greeting)
greet(shout) 
greet(whisper)
HI, I AM CREATED BY A FUNCTION PASSED AS AN ARGUMENT.
hi, i am created by a function passed as an argument.

Returning functions from another function.

def create_adder(x): 
    def adder(y): 
        return x+y 
 
    return adder 
 
add_15 = create_adder(15) 
 
print(add_15(10))
25

As stated above the decorators are used to modify the behaviour of function or class. In Decorators, functions are taken as the argument into another function and then called inside the wrapper function.

@gfg_decorator
def hello_decorator():
    print("Gfg")

'''Above code is equivalent to '''

def hello_decorator():
    print("Gfg")
    
hello_decorator = gfg_decorator(hello_decorator)

Decorator can modify the behaviour:

# importing libraries
import time
import math
 
# decorator to calculate duration
# taken by any function.
def calculate_time(func):
    print('inside')
    # added arguments inside the inner1,
    # if function takes any arguments,
    # can be added like this.
    def inner1(*args, **kwargs):
 
        # storing time before function execution
        begin = time.time()
        print('before')
        a = func(*args, **kwargs)
        
        # storing time after function execution
        end = time.time()
        print("after: Total time taken in : ", func.__name__, end - begin)
        
        return a
 
    return inner1
 
 
 
# this can be added to any function present,
# in this case to calculate a factorial
#@calculate_time
def factorial(num):
 
    # sleep 2 seconds because it takes very less time
    # so that you can see the actual difference
    return math.factorial(num)
 
# calling the function.
factorial(10)
3628800
calculate_time(factorial)(10)
inside
before
Total time taken in :  factorial 3.361701965332031e-05
3628800
factorial = calculate_time(factorial)
inside
factorial(10)
before
Total time taken in :  factorial 0.00014400482177734375
3628800
factorial(1)
before
Total time taken in :  factorial 0.000186920166015625
1
@calculate_time
def factorial(num):
 
    # sleep 2 seconds because it takes very less time
    # so that you can see the actual difference

    return math.factorial(num)
inside
# calling the function.
factorial(10)
before
Total time taken in :  factorial 0.0002372264862060547
3628800

Example

def hello_decorator(func):
    def inner1(*args, **kwargs):
        
        print("before Execution")
        
        # getting the returned value
        returned_value = func(*args, **kwargs)
        print("after Execution")
        
        # returning the value to the original frame
        return returned_value
        
    return inner1


# adding decorator to the function
@hello_decorator
def sum_two_numbers(a, b):
    print("Inside the function")
    return a + b

a, b = 1, 2

# getting the value through return of the function
print("Sum =", sum_two_numbers(a, b))
before Execution
Inside the function
after Execution
Sum = 3

Decorator Chaining

# code for testing decorator chaining 
def decor1(func):
    def inner():
        
        x = func()
        print(f'{x} * {x}')
        return x * x
    return inner 
def decor(func):
    def inner():
        x = func()
        print(f'2 * {x}')
        return 2 * x
    return inner
 


@decor1
@decor
def num(): 
    print(10)
    return 10

@decor
@decor1
def num2():
    print(10)
    return 10

print(num()) 
print(num2())
10
2 * 10
20 * 20
400
10
10 * 10
2 * 100
200

Decorator with parameters

# Python code to illustrate 
# Decorators with parameters in Python 

def decorator_func(x, y):

    def Inner(func):

        def wrapper(*args, **kwargs):
            print("I like Geeksforgeeks")
            print("Summation of values - {}".format(x+y) )

            func(*args, **kwargs)
            
        return wrapper
    return Inner


# Not using decorator 
def my_fun(*args):
    for ele in args:
        print(ele)

# another way of using decorators
decorator_func(12, 15)(my_fun)('Geeks', 'for', 'Geeks')
I like Geeksforgeeks
Summation of values - 27
Geeks
for
Geeks
@decorator_func(12,15)
def my_fun(*args):
    for ele in args:
        print(ele)

# another way of using decorators
my_fun('Geeks', 'for', 'Geeks')
I like Geeksforgeeks
Summation of values - 27
Geeks
for
Geeks

Partials

Partial functions support both positional and keyword arguments to be used as fixed arguments.

input a function with inputs variables to be set
output new function with the variabes set

from functools import partial
partial??
Init signature: partial(self, /, *args, **kwargs)
Docstring:     
partial(func, *args, **keywords) - new function with partial application
of the given arguments and keywords.
Source:        
class partial:
    """New function with partial application of the given arguments
    and keywords.
    """
    __slots__ = "func", "args", "keywords", "__dict__", "__weakref__"
    def __new__(cls, func, /, *args, **keywords):
        if not callable(func):
            raise TypeError("the first argument must be callable")
        if hasattr(func, "func"):
            args = func.args + args
            keywords = {**func.keywords, **keywords}
            func = func.func
        self = super(partial, cls).__new__(cls)
        self.func = func
        self.args = args
        self.keywords = keywords
        return self
    def __call__(self, /, *args, **keywords):
        keywords = {**self.keywords, **keywords}
        return self.func(*self.args, *args, **keywords)
    @recursive_repr()
    def __repr__(self):
        qualname = type(self).__qualname__
        args = [repr(self.func)]
        args.extend(repr(x) for x in self.args)
        args.extend(f"{k}={v!r}" for (k, v) in self.keywords.items())
        if type(self).__module__ == "functools":
            return f"functools.{qualname}({', '.join(args)})"
        return f"{qualname}({', '.join(args)})"
    def __reduce__(self):
        return type(self), (self.func,), (self.func, self.args,
               self.keywords or None, self.__dict__ or None)
    def __setstate__(self, state):
        if not isinstance(state, tuple):
            raise TypeError("argument to __setstate__ must be a tuple")
        if len(state) != 4:
            raise TypeError(f"expected 4 items in state, got {len(state)}")
        func, args, kwds, namespace = state
        if (not callable(func) or not isinstance(args, tuple) or
           (kwds is not None and not isinstance(kwds, dict)) or
           (namespace is not None and not isinstance(namespace, dict))):
            raise TypeError("invalid partial state")
        args = tuple(args) # just in case it's a subclass
        if kwds is None:
            kwds = {}
        elif type(kwds) is not dict: # XXX does it need to be *exactly* dict?
            kwds = dict(kwds)
        if namespace is None:
            namespace = {}
        self.__dict__ = namespace
        self.func = func
        self.args = args
        self.keywords = kwds
File:           ~/mambaforge/envs/cfast/lib/python3.11/functools.py
Type:           type
Subclasses:     
# A normal function
def f(a, b, c, x):
    return 1000*a + 100*b + 10*c + x
 
# A partial function that calls f with
# a as 3, b as 1 and c as 4.
g = partial(f, 3, 1, 4)
 
# Calling g()
print(g(5))
3145
from functools import *
 
# A normal function
def add(a, b, c):
    print(f'a:{a}, b:{b}, c:{c}')
    return 100 * a + 10 * b + c
 
# A partial function with b = 1 and c = 2
add_part = partial(add, c = 2, b = 1)
 
# Calling partial function
print(add_part(3))
a:3, b:1, c:2
312
def greater_than(a, b):
    return a < b

greater_than(5,10)

def make_comparator(n):
    def inner(a):
        return a < n

    return inner


def partial(*args):
    def inner(a):
        return args[0](args[1],a)
    return inner
greater_than_20 = make_comparator(20)
greater_than_20(40)
False
greater_than_2 = partial(greater_than,2)
greater_than_2(2)
False

*args and **kwargs in Python

*args

def myFun(*argv):
    for arg in argv:
        print(arg)
 
 
myFun('Hello', 'Welcome', 'to', 'GeeksforGeeks')
Hello
Welcome
to
GeeksforGeeks
def myFun(arg1, *argv):
    print("First argument :", arg1)
    for arg in argv:
        print("Next argument through *argv :", arg)
 
 
myFun('Hello', 'Welcome', 'to', 'GeeksforGeeks')
First argument : Hello
Next argument through *argv : Welcome
Next argument through *argv : to
Next argument through *argv : GeeksforGeeks

**kwargs

def myFun(**kwargs):
    for key, value in kwargs.items():
        print("%s == %s" % (key, value))
 
 
# Driver code
myFun(first='Geeks', mid='for', last='Geeks')
first == Geeks
mid == for
last == Geeks
def myFun(arg1, **kwargs):
    for key, value in kwargs.items():
        print("%s == %s" % (key, value))
 
 
# Driver code
myFun("Hi",  first='Geeks', mid='for', last='Geeks')
first == Geeks
mid == for
last == Geeks
def myFun(arg1, arg2, arg3):
    print("arg1:", arg1)
    print("arg2:", arg2)
    print("arg3:", arg3)
 
 
# Now we can use *args or **kwargs to
# pass arguments to this function :
args = ("Geeks", "for", "Geeks")
myFun(*args)
 
kwargs = {"arg1": "Geeks", "arg2": "for", "arg3": "Geeks"}
myFun(**kwargs)
arg1: Geeks
arg2: for
arg3: Geeks
arg1: Geeks
arg2: for
arg3: Geeks
def myFun(*args, **kwargs):
    print("args: ", args)
    print("kwargs: ", kwargs)
 
 
# Now we can use both *args ,**kwargs
# to pass arguments to this function :
myFun('geeks', 'for', 'geeks', first="Geeks", mid="for", last="Geeks")
args:  ('geeks', 'for', 'geeks')
kwargs:  {'first': 'Geeks', 'mid': 'for', 'last': 'Geeks'}
# defining car class
class car():
    # args receives unlimited no. of arguments as an array
    def __init__(self, *args):
        # access args index like array does
        self.speed = args[0]
        self.color = args[1]
 
 
# creating objects of car class
audi = car(200, 'red')
bmw = car(250, 'black')
mb = car(190, 'white')
 
# printing the color and speed of the cars
print(audi.color)
print(bmw.speed)
red
250
# defining car class
class car():
    # args receives unlimited no. of arguments as an array
    def __init__(self, **kwargs):
        # access args index like array does
        self.speed = kwargs['s']
        self.color = kwargs['c']
 
 
# creating objects of car class
audi = car(s=200, c='red')
bmw = car(s=250, c='black')
mb = car(s=190, c='white')
 
# printing the color and speed of cars
print(audi.color)
print(bmw.speed)
red
250

Yield

def simpleGeneratorFun():
    yield 1
    yield 2
    yield 3
 
 
# Driver code to check above generator function
for value in simpleGeneratorFun():
    print(value)
1
2
3
def nextSquare():
    i = 1
 
    # An Infinite loop to generate squares
    while True:
        yield i*i
        i += 1  # Next execution resumes
        # from this point
 
 
# Driver code to test above generator
# function
for num in nextSquare():
    if num > 100:
        break
    print(num)
1
4
9
16
25
36
49
64
81
100

Generators

# A generator function 
def simpleGeneratorFun(): 
    yield 1
    yield 2
    yield 3
    
    
    
# x is a generator object 
x = simpleGeneratorFun() 
  
# Iterating over the generator object using next 
  
# In Python 3, __next__() 
print(next(x)) 
print(next(x)) 
print(next(x))
1
2
3
# generator expression 
generator_exp = (i for i in range(5)) 

for i in generator_exp: 
    print(i)
0
1
2
3
4
# generator expression 
generator_exp = (i * 5 for i in range(5) if i%2==0) 

for i in generator_exp: 
    print(i)
0
10
20

Lambda

calc = lambda num: "Even number" if num % 2 == 0 else "Odd number"
 
print(calc(20))
Even number
def cube(y):
    print(f"Finding cube of number:{y}")
    return y * y * y
 
lambda_cube = lambda num: num ** 3
 
# invoking simple function
print("invoking function defined with def keyword:")
print(cube(30))
# invoking lambda function
print("invoking lambda function:", lambda_cube(30))
invoking function defined with def keyword:
Finding cube of number:30
27000
invoking lambda function: 27000

PDB

import pdb; pdb.set_trace()
--Call--
> /home/benedict/mambaforge/envs/cfast/lib/python3.11/site-packages/IPython/core/displayhook.py(258)__call__()
    256         sys.stdout.flush()
    257 
--> 258     def __call__(self, result=None):
    259         """Printing with history cache management.
    260 
ipdb>  help

Documented commands (type help <topic>):
========================================
EOF    commands   enable    ll        pp       s                until 
a      condition  exit      longlist  psource  skip_hidden      up    
alias  cont       h         n         q        skip_predicates  w     
args   context    help      next      quit     source           whatis
b      continue   ignore    p         r        step             where 
break  d          interact  pdef      restart  tbreak         
bt     debug      j         pdoc      return   u              
c      disable    jump      pfile     retval   unalias        
cl     display    l         pinfo     run      undisplay      
clear  down       list      pinfo2    rv       unt            

Miscellaneous help topics:
==========================
exec  pdb
ipdb>  exit
Back to top