Augmentation

Augmentation
Author

Benedict Thekkel

Exported source
import torch,random
import fastcore.all as fc

from torch import nn
from torch.nn import init

from fastAIcourse.datasets import *
from fastAIcourse.conv import *
from fastAIcourse.learner import *
from fastAIcourse.activations import *
from fastAIcourse.init import *
from fastAIcourse.sgd import *
from fastAIcourse.resnet import *
Exported source
import pickle,gzip,math,os,time,shutil
import matplotlib as mpl,numpy as np,matplotlib.pyplot as plt
from collections.abc import Mapping
from pathlib import Path
from operator import attrgetter,itemgetter
from functools import partial
from copy import copy
from contextlib import contextmanager

import torchvision.transforms.functional as TF,torch.nn.functional as F
from torch import tensor,optim
from torch.utils.data import DataLoader,default_collate
from torch.optim import lr_scheduler
from torcheval.metrics import MulticlassAccuracy
from datasets import load_dataset,load_dataset_builder

from fastcore.test import test_close
from torch import distributions
torch.set_printoptions(precision=2, linewidth=140, sci_mode=False)
torch.manual_seed(1)
mpl.rcParams['image.cmap'] = 'gray_r'

import logging
logging.disable(logging.WARNING)

set_seed(42)

if fc.defaults.cpus>8: fc.defaults.cpus=8
xl,yl = 'image','label'
name = "fashion_mnist"
bs = 1024
xmean,xstd = 0.28, 0.35

@inplace
def transformi(b): b[xl] = [(TF.to_tensor(o)-xmean)/xstd for o in b[xl]]

dsd = load_dataset(name)
tds = dsd.with_transform(transformi)
dls = DataLoaders.from_dd(tds, bs, num_workers=fc.defaults.cpus)
metrics = MetricsCB(accuracy=MulticlassAccuracy())
astats = ActivationStats(fc.risinstance(GeneralRelu))
cbs = [DeviceCB(), metrics, ProgressCB(plot=True), astats]
act_gr = partial(GeneralRelu, leak=0.1, sub=0.4)
iw = partial(init_weights, leaky=0.1)
set_seed(42)
lr,epochs = 6e-2,5

Going wider

Exported source
def get_model(act=nn.ReLU, nfs=(16,32,64,128,256,512), norm=nn.BatchNorm2d):
    layers = [ResBlock(1, 16, ks=5, stride=1, act=act, norm=norm)]
    layers += [ResBlock(nfs[i], nfs[i+1], act=act, norm=norm, stride=2) for i in range(len(nfs)-1)]
    layers += [nn.Flatten(), nn.Linear(nfs[-1], 10, bias=False), nn.BatchNorm1d(10)]
    return nn.Sequential(*layers)
lr = 1e-2
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched)]
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.824 0.704 0 train
0.859 0.563 0 eval
0.898 0.381 1 train
0.872 0.422 1 eval
0.922 0.265 2 train
0.907 0.294 2 eval
0.941 0.196 3 train
0.928 0.240 3 eval
0.963 0.139 4 train
0.933 0.222 4 eval

Pooling

Exported source
class GlobalAvgPool(nn.Module):
    def forward(self, x): return x.mean((-2,-1))
Exported source
def get_model2(act=nn.ReLU, nfs=(16,32,64,128,256), norm=nn.BatchNorm2d):
    layers = [ResBlock(1, 16, ks=5, stride=1, act=act, norm=norm)]
    layers += [ResBlock(nfs[i], nfs[i+1], act=act, norm=norm, stride=2) for i in range(len(nfs)-1)]
    layers += [ResBlock(256, 512, act=act, norm=norm), GlobalAvgPool()]
    layers += [nn.Linear(512, 10, bias=False), nn.BatchNorm1d(10)]
    return nn.Sequential(*layers)
TrainLearner(get_model2(), dls, F.cross_entropy, lr=lr, cbs=[DeviceCB()]).summary()
Tot params: 4907588; MFLOPS: 33.0
Module Input Output Num params MFLOPS
ResBlock (1024, 1, 28, 28) (1024, 16, 28, 28) 6928 5.3
ResBlock (1024, 16, 28, 28) (1024, 32, 14, 14) 14560 2.8
ResBlock (1024, 32, 14, 14) (1024, 64, 7, 7) 57792 2.8
ResBlock (1024, 64, 7, 7) (1024, 128, 4, 4) 230272 3.7
ResBlock (1024, 128, 4, 4) (1024, 256, 2, 2) 919296 3.7
ResBlock (1024, 256, 2, 2) (1024, 512, 2, 2) 3673600 14.7
GlobalAvgPool (1024, 512, 2, 2) (1024, 512) 0 0.0
Linear (1024, 512) (1024, 10) 5120 0.0
BatchNorm1d (1024, 10) (1024, 10) 20 0.0
set_seed(42)
model = get_model2(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.822 0.715 0 train
0.857 0.518 0 eval
0.898 0.384 1 train
0.881 0.389 1 eval
0.921 0.267 2 train
0.906 0.286 2 eval
0.941 0.199 3 train
0.925 0.244 3 eval
0.962 0.141 4 train
0.929 0.227 4 eval

Exported source
def get_model3(act=nn.ReLU, nfs=(16,32,64,128,256), norm=nn.BatchNorm2d):
    layers = [ResBlock(1, 16, ks=5, stride=1, act=act, norm=norm)]
    layers += [ResBlock(nfs[i], nfs[i+1], act=act, norm=norm, stride=2) for i in range(len(nfs)-1)]
    layers += [GlobalAvgPool(), nn.Linear(256, 10, bias=False), nn.BatchNorm1d(10)]
    return nn.Sequential(*layers)
TrainLearner(get_model3(), dls, F.cross_entropy, lr=lr, cbs=[DeviceCB()]).summary()
Tot params: 1231428; MFLOPS: 18.3
Module Input Output Num params MFLOPS
ResBlock (1024, 1, 28, 28) (1024, 16, 28, 28) 6928 5.3
ResBlock (1024, 16, 28, 28) (1024, 32, 14, 14) 14560 2.8
ResBlock (1024, 32, 14, 14) (1024, 64, 7, 7) 57792 2.8
ResBlock (1024, 64, 7, 7) (1024, 128, 4, 4) 230272 3.7
ResBlock (1024, 128, 4, 4) (1024, 256, 2, 2) 919296 3.7
GlobalAvgPool (1024, 256, 2, 2) (1024, 256) 0 0.0
Linear (1024, 256) (1024, 10) 2560 0.0
BatchNorm1d (1024, 10) (1024, 10) 20 0.0
[o.shape for o in get_model3()[0].parameters()]
set_seed(42)
model = get_model3(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.810 0.758 0 train
0.871 0.450 0 eval
0.895 0.401 1 train
0.897 0.339 1 eval
0.919 0.276 2 train
0.895 0.319 2 eval
0.939 0.207 3 train
0.927 0.246 3 eval
0.960 0.152 4 train
0.929 0.230 4 eval

Exported source
def get_model4(act=nn.ReLU, nfs=(16,32,64,128,256), norm=nn.BatchNorm2d):
    layers = [conv(1, 16, ks=5, stride=1, act=act, norm=norm)]
    layers += [ResBlock(nfs[i], nfs[i+1], act=act, norm=norm, stride=2) for i in range(len(nfs)-1)]
    layers += [GlobalAvgPool(), nn.Linear(256, 10, bias=False), nn.BatchNorm1d(10)]
    return nn.Sequential(*layers)
[o.shape for o in get_model4()[0].parameters()]
[torch.Size([16, 1, 5, 5]),
 torch.Size([16]),
 torch.Size([16]),
 torch.Size([16])]
TrainLearner(get_model4(), dls, F.cross_entropy, lr=lr, cbs=[DeviceCB()]).summary()
Tot params: 1224948; MFLOPS: 13.3
Module Input Output Num params MFLOPS
Sequential (1024, 1, 28, 28) (1024, 16, 28, 28) 448 0.3
ResBlock (1024, 16, 28, 28) (1024, 32, 14, 14) 14560 2.8
ResBlock (1024, 32, 14, 14) (1024, 64, 7, 7) 57792 2.8
ResBlock (1024, 64, 7, 7) (1024, 128, 4, 4) 230272 3.7
ResBlock (1024, 128, 4, 4) (1024, 256, 2, 2) 919296 3.7
GlobalAvgPool (1024, 256, 2, 2) (1024, 256) 0 0.0
Linear (1024, 256) (1024, 10) 2560 0.0
BatchNorm1d (1024, 10) (1024, 10) 20 0.0
set_seed(42)
model = get_model4(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.804 0.782 0 train
0.869 0.474 0 eval
0.898 0.393 1 train
0.892 0.366 1 eval
0.918 0.277 2 train
0.896 0.340 2 eval
0.940 0.202 3 train
0.923 0.244 3 eval
0.961 0.148 4 train
0.925 0.238 4 eval

Data augmentation

After 20 epochs without augmentation:

{'accuracy': '0.999', 'loss': '0.012', 'epoch': 19, 'train': True}
{'accuracy': '0.924', 'loss': '0.284', 'epoch': 19, 'train': False}

With batchnorm, weight decay doesn’t really regularize.

Exported source
from torchvision import transforms
def tfm_batch(b, tfm_x=fc.noop, tfm_y = fc.noop): return tfm_x(b[0]),tfm_y(b[1])

tfms = nn.Sequential(transforms.RandomCrop(28, padding=4),
                     transforms.RandomHorizontalFlip())

augcb = BatchTransformCB(partial(tfm_batch, tfm_x=tfms), on_val=False)
model = get_model()
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=[SingleBatchCB(), augcb])
learn.fit(1)
xb,yb = learn.batch
show_images(xb[:16], imsize=1.5)

Exported source
@fc.patch
@fc.delegates(show_images)
def show_image_batch(self:Learner, max_n=9, cbs=None, **kwargs):
    self.fit(1, cbs=[SingleBatchCB()]+fc.L(cbs))
    show_images(self.batch[0][:max_n], **kwargs)
learn.show_image_batch(max_n=16, imsize=(1.5))

tfms = nn.Sequential(transforms.RandomCrop(28, padding=1),
                     transforms.RandomHorizontalFlip())
augcb = BatchTransformCB(partial(tfm_batch, tfm_x=tfms), on_val=False)
set_seed(42)
epochs = 20
lr = 1e-2
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched), augcb]
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.764 0.879 0 train
0.824 0.604 0 eval
0.858 0.597 1 train
0.869 0.495 1 eval
0.877 0.477 2 train
0.823 0.520 2 eval
0.887 0.392 3 train
0.874 0.378 3 eval
0.894 0.336 4 train
0.877 0.394 4 eval
0.906 0.288 5 train
0.904 0.281 5 eval
0.914 0.258 6 train
0.858 0.400 6 eval
0.919 0.236 7 train
0.914 0.252 7 eval
0.923 0.223 8 train
0.919 0.234 8 eval
0.930 0.198 9 train
0.922 0.222 9 eval
0.934 0.189 10 train
0.922 0.222 10 eval
0.940 0.173 11 train
0.930 0.205 11 eval
0.943 0.164 12 train
0.927 0.207 12 eval
0.949 0.148 13 train
0.932 0.193 13 eval
0.952 0.139 14 train
0.937 0.185 14 eval
0.959 0.121 15 train
0.939 0.180 15 eval
0.962 0.111 16 train
0.939 0.181 16 eval
0.966 0.102 17 train
0.941 0.180 17 eval
0.970 0.093 18 train
0.943 0.175 18 eval
0.971 0.090 19 train
0.944 0.174 19 eval

A custom collation function could let you do per-item transformations.

mdl_path = Path('models')
mdl_path.mkdir(exist_ok=True)
torch.save(learn.model, mdl_path/'data_aug.pkl')

Test time augmentation (TTA)

Exported source
class CapturePreds(Callback):
    def before_fit(self, learn): self.all_inps,self.all_preds,self.all_targs = [],[],[]
    def after_batch(self, learn):
        self.all_inps. append(to_cpu(learn.batch[0]))
        self.all_preds.append(to_cpu(learn.preds))
        self.all_targs.append(to_cpu(learn.batch[1]))
    def after_fit(self, learn):
        self.all_preds,self.all_targs,self.all_inps = map(torch.cat, [self.all_preds,self.all_targs,self.all_inps])
Exported source
@fc.patch
def capture_preds(self: Learner, cbs=None, inps=False):
    cp = CapturePreds()
    self.fit(1, train=False, cbs=[cp]+fc.L(cbs))
    res = cp.all_preds,cp.all_targs
    if inps: res = res+(cp.all_inps,)
    return res
ap1, at = learn.capture_preds()
accuracy loss epoch train
0.944 0.174 0 eval

ttacb = BatchTransformCB(partial(tfm_batch, tfm_x=TF.hflip), on_val=True)
ap2, at = learn.capture_preds(cbs=[ttacb])
accuracy loss epoch train
0.942 0.175 0 eval

ap1.shape,ap2.shape,at.shape
(torch.Size([10000, 10]), torch.Size([10000, 10]), torch.Size([10000]))
ap = torch.stack([ap1,ap2]).mean(0).argmax(1)
round((ap==at).float().mean().item(), 3)
0.946

Random erase

xb,_ = next(iter(dls.train))
xbt = xb[:16]
xm,xs = xbt.mean(),xbt.std()
xbt.min(), xbt.max()
(tensor(-0.80), tensor(2.06))
pct = 0.2
szx = int(pct*xbt.shape[-2])
szy = int(pct*xbt.shape[-1])
stx = int(random.random()*(1-pct)*xbt.shape[-2])
sty = int(random.random()*(1-pct)*xbt.shape[-1])
stx,sty,szx,szy
(14, 0, 5, 5)
init.normal_(xbt[:,:,stx:stx+szx,sty:sty+szy], mean=xm, std=xs);
show_images(xbt, imsize=1.5)

xbt.min(), xbt.max()
(tensor(-3.36), tensor(2.56))
Exported source
def _rand_erase1(x, pct, xm, xs, mn, mx):
    szx = int(pct*x.shape[-2])
    szy = int(pct*x.shape[-1])
    stx = int(random.random()*(1-pct)*x.shape[-2])
    sty = int(random.random()*(1-pct)*x.shape[-1])
    init.normal_(x[:,:,stx:stx+szx,sty:sty+szy], mean=xm, std=xs)
    x.clamp_(mn, mx)
xb,_ = next(iter(dls.train))
xbt = xb[:16]
_rand_erase1(xbt, 0.2, xbt.mean(), xbt.std(), xbt.min(), xbt.max())
show_images(xbt, imsize=1.5)

xbt.mean(),xbt.std(),xbt.min(), xbt.max()
(tensor(0.09), tensor(1.04), tensor(-0.80), tensor(2.06))
Exported source
def rand_erase(x, pct=0.2, max_num = 4):
    xm,xs,mn,mx = x.mean(),x.std(),x.min(),x.max()
    num = random.randint(0, max_num)
    for i in range(num): _rand_erase1(x, pct, xm, xs, mn, mx)
#     print(num)
    return x
xb,_ = next(iter(dls.train))
xbt = xb[:16]
rand_erase(xbt, 0.2, 4)
show_images(xbt, imsize=1.5)
Exported source
class RandErase(nn.Module):
    def __init__(self, pct=0.2, max_num=4):
        super().__init__()
        self.pct,self.max_num = pct,max_num
    def forward(self, x): return rand_erase(x, self.pct, self.max_num)
tfms = nn.Sequential(transforms.RandomCrop(28, padding=1),
                     transforms.RandomHorizontalFlip(),
                     RandErase())
augcb = BatchTransformCB(partial(tfm_batch, tfm_x=tfms), on_val=False)
model = get_model()
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=[DeviceCB(), SingleBatchCB(), augcb])
learn.fit(1)
xb,yb = learn.batch
show_images(xb[:16], imsize=1.5)

epochs = 20
lr = 2e-2
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched), augcb]
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.760 0.871 0 train
0.813 0.607 0 eval
0.842 0.596 1 train
0.845 0.472 1 eval
0.856 0.480 2 train
0.856 0.427 2 eval
0.866 0.405 3 train
0.856 0.421 3 eval
0.872 0.374 4 train
0.822 0.491 4 eval
0.885 0.323 5 train
0.880 0.363 5 eval
0.895 0.295 6 train
0.852 0.456 6 eval
0.899 0.278 7 train
0.869 0.368 7 eval
0.907 0.257 8 train
0.901 0.301 8 eval
0.912 0.244 9 train
0.910 0.260 9 eval
0.917 0.231 10 train
0.916 0.229 10 eval
0.922 0.215 11 train
0.921 0.220 11 eval
0.926 0.206 12 train
0.928 0.201 12 eval
0.930 0.191 13 train
0.924 0.208 13 eval
0.933 0.185 14 train
0.921 0.219 14 eval
0.938 0.172 15 train
0.929 0.198 15 eval
0.941 0.163 16 train
0.936 0.178 16 eval
0.944 0.153 17 train
0.939 0.172 17 eval
0.947 0.146 18 train
0.940 0.169 18 eval
0.949 0.142 19 train
0.939 0.172 19 eval

Random copy

xb,_ = next(iter(dls.train))
xbt = xb[:16]
szx = int(pct*xbt.shape[-2])
szy = int(pct*xbt.shape[-1])
stx1 = int(random.random()*(1-pct)*xbt.shape[-2])
sty1 = int(random.random()*(1-pct)*xbt.shape[-1])
stx2 = int(random.random()*(1-pct)*xbt.shape[-2])
sty2 = int(random.random()*(1-pct)*xbt.shape[-1])
stx1,sty1,stx2,sty2,szx,szy
(9, 18, 3, 7, 5, 5)
xbt[:,:,stx1:stx1+szx,sty1:sty1+szy] = xbt[:,:,stx2:stx2+szx,sty2:sty2+szy]
show_images(xbt, imsize=1.5)

Exported source
def _rand_copy1(x, pct):
    szx = int(pct*x.shape[-2])
    szy = int(pct*x.shape[-1])
    stx1 = int(random.random()*(1-pct)*x.shape[-2])
    sty1 = int(random.random()*(1-pct)*x.shape[-1])
    stx2 = int(random.random()*(1-pct)*x.shape[-2])
    sty2 = int(random.random()*(1-pct)*x.shape[-1])
    x[:,:,stx1:stx1+szx,sty1:sty1+szy] = x[:,:,stx2:stx2+szx,sty2:sty2+szy]
xb,_ = next(iter(dls.train))
xbt = xb[:16]
_rand_copy1(xbt, 0.2)
show_images(xbt, imsize=1.5)

Exported source
def rand_copy(x, pct=0.2, max_num = 4):
    num = random.randint(0, max_num)
    for i in range(num): _rand_copy1(x, pct)
#     print(num)
    return x
xb,_ = next(iter(dls.train))
xbt = xb[:16]
rand_copy(xbt, 0.2, 4)
show_images(xbt, imsize=1.5)

Exported source
class RandCopy(nn.Module):
    def __init__(self, pct=0.2, max_num=4):
        super().__init__()
        self.pct,self.max_num = pct,max_num
    def forward(self, x): return rand_copy(x, self.pct, self.max_num)
tfms = nn.Sequential(transforms.RandomCrop(28, padding=1),
                     transforms.RandomHorizontalFlip(),
                     RandCopy())
augcb = BatchTransformCB(partial(tfm_batch, tfm_x=tfms), on_val=False)
model = get_model()
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=[DeviceCB(), SingleBatchCB(), augcb])
learn.fit(1)
xb,yb = learn.batch
show_images(xb[:16], imsize=1.5)

set_seed(1)
epochs = 20
lr = 1e-2
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched), augcb]
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.739 0.940 0 train
0.810 0.599 0 eval
0.832 0.656 1 train
0.842 0.534 1 eval
0.849 0.558 2 train
0.838 0.487 2 eval
0.858 0.467 3 train
0.827 0.528 3 eval
0.873 0.394 4 train
0.860 0.418 4 eval
0.885 0.344 5 train
0.868 0.391 5 eval
0.891 0.321 6 train
0.885 0.334 6 eval
0.899 0.293 7 train
0.906 0.261 7 eval
0.910 0.258 8 train
0.913 0.242 8 eval
0.913 0.249 9 train
0.897 0.294 9 eval
0.914 0.242 10 train
0.921 0.229 10 eval
0.922 0.221 11 train
0.923 0.215 11 eval
0.925 0.212 12 train
0.927 0.206 12 eval
0.929 0.200 13 train
0.925 0.209 13 eval
0.934 0.189 14 train
0.918 0.226 14 eval
0.937 0.177 15 train
0.933 0.187 15 eval
0.942 0.167 16 train
0.937 0.178 16 eval
0.944 0.159 17 train
0.939 0.171 17 eval
0.946 0.152 18 train
0.939 0.170 18 eval
0.951 0.142 19 train
0.940 0.171 19 eval

model2 = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn2 = TrainLearner(model2, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn2.fit(epochs)
accuracy loss epoch train
0.745 0.935 0 train
0.823 0.573 0 eval
0.838 0.648 1 train
0.863 0.455 1 eval
0.853 0.542 2 train
0.812 0.598 2 eval
0.860 0.471 3 train
0.864 0.408 3 eval
0.871 0.398 4 train
0.858 0.438 4 eval
0.884 0.348 5 train
0.898 0.295 5 eval
0.896 0.308 6 train
0.883 0.345 6 eval
0.901 0.284 7 train
0.891 0.298 7 eval
0.899 0.290 8 train
0.903 0.284 8 eval
0.916 0.243 9 train
0.905 0.271 9 eval
0.914 0.245 10 train
0.916 0.243 10 eval
0.919 0.227 11 train
0.922 0.227 11 eval
0.925 0.211 12 train
0.923 0.220 12 eval
0.930 0.197 13 train
0.932 0.198 13 eval
0.934 0.186 14 train
0.930 0.201 14 eval
0.938 0.173 15 train
0.934 0.194 15 eval
0.943 0.163 16 train
0.929 0.205 16 eval
0.943 0.160 17 train
0.938 0.183 17 eval
0.946 0.152 18 train
0.938 0.183 18 eval
0.947 0.150 19 train
0.937 0.185 19 eval

mdl_path = Path('models')
torch.save(learn.model,  mdl_path/'randcopy1.pkl')
torch.save(learn2.model, mdl_path/'randcopy2.pkl')
cp1 = CapturePreds()
learn.fit(1, train=False, cbs=cp1)
accuracy loss epoch train
0.940 0.171 0 eval

cp2 = CapturePreds()
learn2.fit(1, train=False, cbs=cp2)
accuracy loss epoch train
0.937 0.185 0 eval

ap = torch.stack([cp1.all_preds,cp2.all_preds]).mean(0).argmax(1)
round((ap==cp1.all_targs).float().mean().item(), 3)
0.942

Dropout

p = 0.1
dist = distributions.binomial.Binomial(probs=1-p)
dist.sample((10,))
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
Exported source
class Dropout(nn.Module):
    def __init__(self, p=0.1):
        super().__init__()
        self.p = p

    def forward(self, x):
        if not self.training: return x
        dist = distributions.binomial.Binomial(tensor(1.0).to(x.device), probs=1-self.p)
        return x * dist.sample(x.size()) * 1/(1-self.p)
Exported source
def get_dropmodel(act=nn.ReLU, nfs=(16,32,64,128,256,512), norm=nn.BatchNorm2d, drop=0.0):
    layers = [ResBlock(1, 16, ks=5, stride=1, act=act, norm=norm), nn.Dropout2d(drop)]
    layers += [ResBlock(nfs[i], nfs[i+1], act=act, norm=norm, stride=2) for i in range(len(nfs)-1)]
    layers += [nn.Flatten(), Dropout(drop), nn.Linear(nfs[-1], 10, bias=False), nn.BatchNorm1d(10)]
    return nn.Sequential(*layers)
set_seed(42)
epochs=5
lr = 1e-2
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched)]
model = get_dropmodel(act_gr, norm=nn.BatchNorm2d, drop=0.1).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.809 0.745 0 train
0.854 0.482 0 eval
0.894 0.392 1 train
0.892 0.340 1 eval
0.917 0.277 2 train
0.910 0.278 2 eval
0.937 0.208 3 train
0.927 0.234 3 eval
0.956 0.155 4 train
0.930 0.225 4 eval

Exported source
class TTD_CB(Callback):
    def before_epoch(self, learn):
        learn.model.apply(lambda m: m.train() if isinstance(m, (nn.Dropout,nn.Dropout2d)) else None)

Augment 2

Exported source
@inplace
def transformi(b): b[xl] = [(TF.to_tensor(o)*2-1) for o in b[xl]]
tds = dsd.with_transform(transformi)
dls = DataLoaders.from_dd(tds, bs, num_workers=fc.defaults.cpus)
set_seed(42)
epochs = 20
lr = 1e-2
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched), augcb]
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
accuracy loss epoch train
0.742 0.932 0 train
0.798 0.623 0 eval
0.832 0.663 1 train
0.785 0.712 1 eval
0.855 0.535 2 train
0.848 0.496 2 eval
0.854 0.486 3 train
0.790 0.620 3 eval
0.867 0.412 4 train
0.865 0.390 4 eval
0.885 0.344 5 train
0.880 0.353 5 eval
0.887 0.335 6 train
0.873 0.377 6 eval
0.899 0.292 7 train
0.908 0.260 7 eval
0.904 0.274 8 train
0.897 0.286 8 eval
0.905 0.266 9 train
0.909 0.258 9 eval
0.915 0.240 10 train
0.917 0.232 10 eval
0.920 0.227 11 train
0.913 0.243 11 eval
0.924 0.214 12 train
0.922 0.216 12 eval
0.929 0.202 13 train
0.930 0.201 13 eval
0.934 0.185 14 train
0.933 0.191 14 eval
0.934 0.183 15 train
0.936 0.182 15 eval
0.941 0.166 16 train
0.938 0.179 16 eval
0.943 0.163 17 train
0.940 0.177 17 eval
0.945 0.158 18 train
0.938 0.180 18 eval
0.947 0.152 19 train
0.940 0.177 19 eval

torch.save(learn.model, 'models/data_aug2.pkl')
Back to top