Tiny Imagenet

Author

Benedict Thekkel

import os
# os.environ['CUDA_VISIBLE_DEVICES']='2'
import shutil,timm,os,torch,random,datasets,math,warnings
import fastcore.all as fc, numpy as np, matplotlib as mpl, matplotlib.pyplot as plt
import k_diffusion as K, torchvision.transforms as T
import torchvision.transforms.functional as TF,torch.nn.functional as F

from torch.utils.data import DataLoader,default_collate
from pathlib import Path
from torch.nn import init
from fastcore.foundation import L
from torch import nn,tensor
from operator import itemgetter
from torcheval.metrics import MulticlassAccuracy
from functools import partial
from torch.optim import lr_scheduler
from torch import optim
from torchvision.io import read_image,ImageReadMode
from glob import glob

from fastAIcourse.datasets import *
from fastAIcourse.conv import *
from fastAIcourse.learner import *
from fastAIcourse.activations import *
from fastAIcourse.init import *
from fastAIcourse.sgd import *
from fastAIcourse.resnet import *
from fastAIcourse.augment import *
from fastAIcourse.accel import *
from fastAIcourse.training import *
from fastprogress import progress_bar
torch.set_printoptions(precision=5, linewidth=140, sci_mode=False)
torch.manual_seed(1)
mpl.rcParams['figure.dpi'] = 70

set_seed(42)
if fc.defaults.cpus>8: fc.defaults.cpus=8
path_data = Path('data')
path_data.mkdir(exist_ok=True)
path = path_data/'tiny-imagenet-200'

url = 'http://cs231n.stanford.edu/tiny-imagenet-200.zip'
if not path.exists():
    path_zip = fc.urlsave(url, path_data)
    shutil.unpack_archive('data/tiny-imagenet-200.zip', 'data')

bs = 512

class TinyDS:
    def __init__(self, path):
        self.path = Path(path)
        self.files = glob(str(path/'**/*.JPEG'), recursive=True)
    def __len__(self): return len(self.files)
    def __getitem__(self, i): return self.files[i],Path(self.files[i]).parent.parent.name

tds = TinyDS(path/'train')
path_anno = path/'val'/'val_annotations.txt'
anno = dict(o.split('\t')[:2] for o in path_anno.read_text().splitlines())
class TinyValDS(TinyDS):
    def __getitem__(self, i): return self.files[i],anno[os.path.basename(self.files[i])]
vds = TinyValDS(path/'val')
class TfmDS:
    def __init__(self, ds, tfmx=fc.noop, tfmy=fc.noop): self.ds,self.tfmx,self.tfmy = ds,tfmx,tfmy
    def __len__(self): return len(self.ds)
    def __getitem__(self, i):
        x,y = self.ds[i]
        return self.tfmx(x),self.tfmy(y)
id2str = (path/'wnids.txt').read_text().splitlines()
str2id = {v:k for k,v in enumerate(id2str)}
xmean,xstd = (tensor([0.47565, 0.40303, 0.31555]), tensor([0.28858, 0.24402, 0.26615]))
def tfmx(x):
    img = read_image(x, mode=ImageReadMode.RGB)/255
    return (img-xmean[:,None,None])/xstd[:,None,None]

def tfmy(y): return tensor(str2id[y])

tfm_tds = TfmDS(tds, tfmx, tfmy)
tfm_vds = TfmDS(vds, tfmx, tfmy)

def denorm(x): return (x*xstd[:,None,None]+xmean[:,None,None]).clip(0,1)

all_synsets = [o.split('\t') for o in (path/'words.txt').read_text().splitlines()]
synsets = {k:v.split(',', maxsplit=1)[0] for k,v in all_synsets if k in id2str}

dls = DataLoaders(*get_dls(tfm_tds, tfm_vds, bs=bs, num_workers=8))
def tfm_batch(b, tfm_x=fc.noop, tfm_y = fc.noop): return tfm_x(b[0]),tfm_y(b[1])

tfms = nn.Sequential(T.Pad(4), T.RandomCrop(64),
                     T.RandomHorizontalFlip(),
                     RandErase())
augcb = BatchTransformCB(partial(tfm_batch, tfm_x=tfms), on_val=False)

act_gr = partial(GeneralRelu, leak=0.1, sub=0.4)
iw = partial(init_weights, leaky=0.1)

nfs = (32,64,128,256,512,1024)

def get_dropmodel(act=act_gr, nfs=nfs, norm=nn.BatchNorm2d, drop=0.1):
    layers = [nn.Conv2d(3, nfs[0], 5, padding=2)]
#     layers += [ResBlock(nfs[0], nfs[0], ks=3, stride=1, act=act, norm=norm)]
    layers += [ResBlock(nfs[i], nfs[i+1], act=act, norm=norm, stride=2)
               for i in range(len(nfs)-1)]
    layers += [nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Dropout(drop)]
    layers += [nn.Linear(nfs[-1], 200, bias=False), nn.BatchNorm1d(200)]
    return nn.Sequential(*layers).apply(iw)
def res_blocks(n_bk, ni, nf, stride=1, ks=3, act=act_gr, norm=None):
    return nn.Sequential(*[
        ResBlock(ni if i==0 else nf, nf, stride=stride if i==n_bk-1 else 1, ks=ks, act=act, norm=norm)
        for i in range(n_bk)])

nbks = (3,2,2,1,1)

def get_dropmodel(act=act_gr, nfs=nfs, nbks=nbks, norm=nn.BatchNorm2d, drop=0.2):
    layers = [ResBlock(3, nfs[0], ks=5, stride=1, act=act, norm=norm)]
    layers += [res_blocks(nbks[i], nfs[i], nfs[i+1], act=act, norm=norm, stride=2)
               for i in range(len(nfs)-1)]
    layers += [nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Dropout(drop)]
    layers += [nn.Linear(nfs[-1], 200, bias=False), nn.BatchNorm1d(200)]
    return nn.Sequential(*layers).apply(iw)
opt_func = partial(optim.AdamW, eps=1e-5)
metrics = MetricsCB(accuracy=MulticlassAccuracy())
cbs = [DeviceCB(), metrics, ProgressCB(plot=True), MixedPrecision()]

epochs = 25
lr = 3e-2
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched), augcb]
learn = Learner(get_dropmodel(), dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=opt_func)
aug_tfms = nn.Sequential(T.Pad(4), T.RandomCrop(64),
                     T.RandomHorizontalFlip(),
                     T.TrivialAugmentWide())

norm_tfm = T.Normalize(xmean, xstd)
erase_tfm = RandErase()

from PIL import Image

def tfmx(x, aug=False):
    x = Image.open(x).convert('RGB')
    if aug: x = aug_tfms(x)
    x = TF.to_tensor(x)
    x = norm_tfm(x)
    if aug: x = erase_tfm(x[None])[0]
    return x

tfm_tds = TfmDS(tds, partial(tfmx, aug=True), tfmy)
tfm_vds = TfmDS(vds, tfmx, tfmy)

dls = DataLoaders(*get_dls(tfm_tds, tfm_vds, bs=bs, num_workers=8))
def conv(ni, nf, ks=3, stride=1, act=nn.ReLU, norm=None, bias=True):
    layers = []
    if norm: layers.append(norm(ni))
    if act : layers.append(act())
    layers.append(nn.Conv2d(ni, nf, stride=stride, kernel_size=ks, padding=ks//2, bias=bias))
    return nn.Sequential(*layers)

def _conv_block(ni, nf, stride, act=act_gr, norm=None, ks=3):
    return nn.Sequential(conv(ni, nf, stride=1     , act=act, norm=norm, ks=ks),
                         conv(nf, nf, stride=stride, act=act, norm=norm, ks=ks))

class ResBlock(nn.Module):
    def __init__(self, ni, nf, stride=1, ks=3, act=act_gr, norm=None):
        super().__init__()
        self.convs = _conv_block(ni, nf, stride, act=act, ks=ks, norm=norm)
        self.idconv = fc.noop if ni==nf else conv(ni, nf, ks=1, stride=1, act=None, norm=norm)
        self.pool = fc.noop if stride==1 else nn.AvgPool2d(2, ceil_mode=True)

    def forward(self, x): return self.convs(x) + self.idconv(self.pool(x))
def get_dropmodel(act=act_gr, nfs=nfs, nbks=nbks, norm=nn.BatchNorm2d, drop=0.2):
    layers = [nn.Conv2d(3, nfs[0], 5, padding=2)]
    layers += [res_blocks(nbks[i], nfs[i], nfs[i+1], act=act, norm=norm, stride=2)
               for i in range(len(nfs)-1)]
    layers += [act_gr(), norm(nfs[-1]), nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Dropout(drop)]
    layers += [nn.Linear(nfs[-1], 200, bias=False), nn.BatchNorm1d(200)]
    return nn.Sequential(*layers).apply(iw)
epochs = 50
lr = 0.1
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched)]
model = get_dropmodel(nbks=(1,2,4,2,2), nfs=(32, 64, 128, 512, 768, 1024), drop=0.1)
learn = Learner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=opt_func)
learn.fit(epochs)
accuracy loss epoch train
0.022 5.068 0 train
0.037 4.833 0 eval
0.046 4.766 1 train
0.065 4.545 1 eval
0.072 4.501 2 train
0.078 4.342 2 eval
0.099 4.268 3 train
0.135 3.958 3 eval
0.137 4.010 4 train
0.134 4.026 4 eval
0.166 3.801 5 train
0.162 3.899 5 eval
0.195 3.635 6 train
0.212 3.536 6 eval
0.214 3.503 7 train
0.242 3.391 7 eval
0.237 3.382 8 train
0.260 3.325 8 eval
0.252 3.293 9 train
0.300 3.074 9 eval
0.269 3.202 10 train
0.287 3.198 10 eval
0.286 3.118 11 train
0.295 3.080 11 eval
0.296 3.055 12 train
0.307 3.070 12 eval
0.309 2.984 13 train
0.323 3.021 13 eval
0.319 2.931 14 train
0.334 2.866 14 eval
0.333 2.868 15 train
0.312 2.970 15 eval
0.343 2.813 16 train
0.283 3.314 16 eval
0.353 2.762 17 train
0.368 2.690 17 eval
0.362 2.713 18 train
0.329 2.986 18 eval
0.368 2.680 19 train
0.374 2.743 19 eval
0.377 2.635 20 train
0.372 2.705 20 eval
0.386 2.587 21 train
0.379 2.755 21 eval
0.394 2.551 22 train
0.378 2.689 22 eval
0.402 2.505 23 train
0.396 2.563 23 eval
0.411 2.469 24 train
0.429 2.437 24 eval
0.420 2.416 25 train
0.423 2.477 25 eval
0.431 2.366 26 train
0.406 2.596 26 eval
0.439 2.328 27 train
0.403 2.525 27 eval
0.449 2.273 28 train
0.424 2.490 28 eval
0.462 2.215 29 train
0.477 2.181 29 eval
0.471 2.172 30 train
0.474 2.224 30 eval
0.486 2.103 31 train
0.518 2.009 31 eval
0.502 2.027 32 train
0.495 2.119 32 eval
0.513 1.969 33 train
0.478 2.217 33 eval
0.529 1.890 34 train
0.516 2.058 34 eval
0.544 1.827 35 train
0.532 1.925 35 eval
0.565 1.731 36 train
0.557 1.866 36 eval
0.580 1.662 37 train
0.557 1.877 37 eval
0.603 1.565 38 train
0.585 1.726 38 eval
0.623 1.471 39 train
0.590 1.725 39 eval
0.646 1.369 40 train
0.602 1.683 40 eval
0.671 1.263 41 train
0.607 1.690 41 eval
0.696 1.169 42 train
0.616 1.649 42 eval
0.720 1.069 43 train
0.629 1.608 43 eval
0.742 0.983 44 train
0.634 1.594 44 eval
0.761 0.912 45 train
0.639 1.579 45 eval
0.779 0.847 46 train
0.642 1.567 46 eval
0.791 0.801 47 train
0.645 1.558 47 eval
0.797 0.774 48 train
0.647 1.553 48 eval
0.802 0.766 49 train
0.644 1.556 49 eval

torch.save(learn.model, 'models/inettiny-widish-50')
Back to top