Getting Started

Getting Started
Author

Benedict Thekkel

Check for all installs and versions

!conda list | grep "pytorch"
ffmpeg                    4.3                  hf484d3e_0    pytorch
libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
pytorch                   2.0.1           py3.11_cuda11.8_cudnn8.7.0_0    pytorch
pytorch-cuda              11.8                 h7e8668a_5    pytorch
pytorch-ignite            0.4.12                   pypi_0    pypi
pytorch-lightning         2.0.7                    pypi_0    pypi
pytorch-mutex             1.0                        cuda    pytorch
torchaudio                2.0.2               py311_cu118    pytorch
torchtriton               2.0.0                     py311    pytorch
torchvision               0.15.2              py311_cu118    pytorch
!nvcc --version
/bin/bash: line 1: nvcc: command not found
!pip list | grep "fastai" 
!pip list | grep "fastbook"
fastai                        2.7.12
fastbook                      0.0.28
import torch

if torch.cuda.is_available():
    print("GPU is available.")
    num_gpu = torch.cuda.device_count()
    for i in range(num_gpu):
        gpu_name = torch.cuda.get_device_name(i)
        gpu_memory = torch.cuda.get_device_properties(i).total_memory / (1024 ** 3)  # Convert bytes to GB
        print(f"GPU {i}: {gpu_name}, Memory: {gpu_memory:.2f} GB")
else:
    print("GPU is not available.")
GPU is available.
GPU 0: NVIDIA GeForce RTX 2060, Memory: 6.00 GB
# Check if CUDA (GPU) is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

Generate Data Images

Code
from fastbook import search_images_ddg
from fastdownload import download_url
from fastai.vision.all import *
from nbdevAuto import functions
import os
import shutil

Let’s start by searching for a bird photo and seeing what kind of result we get. We’ll start by getting URLs from a search:

functions.download_pic('bird', n_images = 1, folder = './Data', show_progress=True, recreate = False)
Image file exists.

…and then download a URL and take a look at it:

Now let’s do the same with “forest photos”:

functions.download_pic('forest', folder = './Data')
Image file exists.

searches = ('forest','bird')
path = Path('Data/bird_or_not')

functions.create_data_folder(folder_path=path,
                             searches=searches,
                             amount=200,
                            recreate= False)
Folder already exists: Data/bird_or_not

Creating the model

dls = DataBlock(
    blocks=(ImageBlock, CategoryBlock), 
    get_items=get_image_files, 
    splitter=RandomSplitter(valid_pct=0.2, seed=42),
    get_y=parent_label,
    item_tfms=[Resize(192, method='squish')],
    
)

dls = dls.dataloaders(path, bs = 16)

dls.show_batch(max_n=6)

Here what each of the DataBlock parameters means:

blocks=(ImageBlock, CategoryBlock),

The inputs to our model are images, and the outputs are categories (in this case, “bird” or “forest”).

get_items=get_image_files, 

To find all the inputs to our model, run the get_image_files function (which returns a list of all image files in a path).

splitter=RandomSplitter(valid_pct=0.2, seed=42),

Split the data into training and validation sets randomly, using 20% of the data for the validation set.

get_y=parent_label,

The labels (y values) is the name of the parent of each file (i.e. the name of the folder they’re in, which will be bird or forest).

item_tfms=[Resize(192, method='squish')]

Before training, resize each image to 192x192 pixels by “squishing” it (as opposed to cropping it).

Traning the model

Now we’re ready to train our model. The fastest widely used computer vision model is resnet18. You can train this in a few minutes, even on a CPU! (On a GPU, it generally takes under 10 seconds…)

fastai comes with a helpful fine_tune() method which automatically uses best practices for fine tuning a pre-trained model, so we’ll use that.1

import timm
timm.list_models('resnet1*')[0:5]
['resnet10t', 'resnet14t', 'resnet18', 'resnet18d', 'resnet101']
learn = vision_learner(dls, 'resnet18', metrics=error_rate)
learn.fine_tune(5)
epoch train_loss valid_loss error_rate time
0 0.657275 0.040000 0.014085 00:05
epoch train_loss valid_loss error_rate time
0 0.046995 0.029015 0.014085 00:02
1 0.095600 0.020682 0.014085 00:01
2 0.145258 0.025311 0.000000 00:01
3 0.101540 0.023066 0.000000 00:01
4 0.095942 0.017011 0.000000 00:01

Step 3: Use our model (and build your own!)

Let’s see what our model thinks about that bird we downloaded at the start:

??PILImage
Init signature: PILImage()
Source:        
class PILImage(PILBase): 
    "A RGB Pillow `Image` that can show itself and converts to `TensorImage`"
    pass
File:           ~/mambaforge/envs/cfast/lib/python3.11/site-packages/fastai/vision/core.py
Type:           BypassNewMeta
Subclasses:     PILImageBW
is_bird,_,probs = learn.predict(PILImage.create('Data/bird0.jpg'))
print(f"This is a: {is_bird}.")
print(f"Probability it's a bird: {probs[0]:.4f}")
This is a: bird.
Probability it's a bird: 0.9932
functions.classify_images(learn, 'Data/bird0.jpg')
{'bird': 99.31602, 'forest': 0.68398}

Deep Learning Is Not Just for Image Classification

  • SegmentationDataLoaders - Easier than datablocks
path = untar_data(URLs.CAMVID_TINY)
dls = SegmentationDataLoaders.from_label_func(
    path, bs=8, fnames = get_image_files(path/"images"),
    label_func = lambda o: path/'labels'/f'{o.stem}_P{o.suffix}',
    codes = np.loadtxt(path/'codes.txt', dtype=str)
)

learn = unet_learner(dls, resnet34)
learn.fine_tune(8)
  • Tabular analysis - income prediction
from fastai.tabular.all import *
path = untar_data(URLs.ADULT_SAMPLE)

dls = TabularDataLoaders.from_csv(path/'adult.csv', path=path, y_names="salary",
    cat_names = ['workclass', 'education', 'marital-status', 'occupation',
                 'relationship', 'race'],
    cont_names = ['age', 'fnlwgt', 'education-num'],
    procs = [Categorify, FillMissing, Normalize])

learn = tabular_learner(dls, metrics=accuracy)
learn.fit_one_cycle(3)

dls.show_batch()
  • Collaboration filtering - ratings/ recommendations
from fastai.collab import *
path = untar_data(URLs.ML_SAMPLE)
dls = CollabDataLoaders.from_csv(path/'ratings.csv')
learn = collab_learner(dls, y_range=(0.5,5.5))
learn.fine_tune(10)
learn.show_results()
  • Example
from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test', bs=32)
learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)
learn.fine_tune(4, 1e-2)

This reduces the batch size to 32 (we will explain this later). If you keep hitting the same error, change 32 to 16

  • Example
from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')
learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, 
                                metrics=accuracy)
learn.fine_tune(4, 1e-2)
Back to top