Hyper Parameter Optimization

Hyper Parameter Optimization
Author

Benedict Thekkel

For iris flower dataset in sklearn library, we are going to find out best model and best hyper parameters using GridSearchCV

Load iris flower dataset

from sklearn import svm, datasets
iris = datasets.load_iris()
import pandas as pd
df = pd.DataFrame(iris.data,columns=iris.feature_names)
df['flower'] = iris.target
df['flower'] = df['flower'].apply(lambda x: iris.target_names[x])
df[47:150]
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) flower
47 4.6 3.2 1.4 0.2 setosa
48 5.3 3.7 1.5 0.2 setosa
49 5.0 3.3 1.4 0.2 setosa
50 7.0 3.2 4.7 1.4 versicolor
51 6.4 3.2 4.5 1.5 versicolor
... ... ... ... ... ...
145 6.7 3.0 5.2 2.3 virginica
146 6.3 2.5 5.0 1.9 virginica
147 6.5 3.0 5.2 2.0 virginica
148 6.2 3.4 5.4 2.3 virginica
149 5.9 3.0 5.1 1.8 virginica

103 rows × 5 columns

Approach 1: Use train_test_split and manually tune parameters by trial and error

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)
model = svm.SVC(kernel='rbf',C=30,gamma='auto')
model.fit(X_train,y_train)
model.score(X_test, y_test)
0.9555555555555556

Approach 2: Use K Fold Cross validation

Manually try suppling models with different parameters to cross_val_score function with 5 fold cross validation

cross_val_score(svm.SVC(kernel='linear',C=10,gamma='auto'),iris.data, iris.target, cv=5)
array([1.        , 1.        , 0.9       , 0.96666667, 1.        ])
cross_val_score(svm.SVC(kernel='rbf',C=10,gamma='auto'),iris.data, iris.target, cv=5)
array([0.96666667, 1.        , 0.96666667, 0.96666667, 1.        ])
cross_val_score(svm.SVC(kernel='rbf',C=20,gamma='auto'),iris.data, iris.target, cv=5)
array([0.96666667, 1.        , 0.9       , 0.96666667, 1.        ])

Above approach is tiresome and very manual. We can use for loop as an alternative

kernels = ['rbf', 'linear']
C = [1,10,20]
avg_scores = {}
for kval in kernels:
    for cval in C:
        cv_scores = cross_val_score(svm.SVC(kernel=kval,C=cval,gamma='auto'),iris.data, iris.target, cv=5)
        avg_scores[kval + '_' + str(cval)] = np.average(cv_scores)

avg_scores
{'rbf_1': 0.9800000000000001,
 'rbf_10': 0.9800000000000001,
 'rbf_20': 0.9666666666666668,
 'linear_1': 0.9800000000000001,
 'linear_10': 0.9733333333333334,
 'linear_20': 0.9666666666666666}

From above results we can say that rbf with C=1 or 10 or linear with C=1 will give best performance

Approach 3: Use GridSearchCV

GridSearchCV does exactly same thing as for loop above but in a single line of code

from sklearn.model_selection import GridSearchCV
clf = GridSearchCV(svm.SVC(gamma='auto'), {
    'C': [1,10,20],
    'kernel': ['rbf','linear']
}, cv=5, return_train_score=False)
clf.fit(iris.data, iris.target)
clf.cv_results_
{'mean_fit_time': array([0.00118256, 0.00104566, 0.0007266 , 0.00084271, 0.00088511,
        0.00065002]),
 'std_fit_time': array([6.73577797e-04, 4.38131552e-04, 1.68876617e-04, 3.96551972e-04,
        4.28567104e-04, 8.82425265e-05]),
 'mean_score_time': array([0.00081396, 0.00048532, 0.00048227, 0.00054522, 0.00063434,
        0.00044188]),
 'std_score_time': array([4.28254909e-04, 1.10279724e-04, 1.84006103e-04, 1.59358051e-04,
        3.89407295e-04, 6.20551122e-05]),
 'param_C': masked_array(data=[1, 1, 10, 10, 20, 20],
              mask=[False, False, False, False, False, False],
        fill_value='?',
             dtype=object),
 'param_kernel': masked_array(data=['rbf', 'linear', 'rbf', 'linear', 'rbf', 'linear'],
              mask=[False, False, False, False, False, False],
        fill_value='?',
             dtype=object),
 'params': [{'C': 1, 'kernel': 'rbf'},
  {'C': 1, 'kernel': 'linear'},
  {'C': 10, 'kernel': 'rbf'},
  {'C': 10, 'kernel': 'linear'},
  {'C': 20, 'kernel': 'rbf'},
  {'C': 20, 'kernel': 'linear'}],
 'split0_test_score': array([0.96666667, 0.96666667, 0.96666667, 1.        , 0.96666667,
        1.        ]),
 'split1_test_score': array([1., 1., 1., 1., 1., 1.]),
 'split2_test_score': array([0.96666667, 0.96666667, 0.96666667, 0.9       , 0.9       ,
        0.9       ]),
 'split3_test_score': array([0.96666667, 0.96666667, 0.96666667, 0.96666667, 0.96666667,
        0.93333333]),
 'split4_test_score': array([1., 1., 1., 1., 1., 1.]),
 'mean_test_score': array([0.98      , 0.98      , 0.98      , 0.97333333, 0.96666667,
        0.96666667]),
 'std_test_score': array([0.01632993, 0.01632993, 0.01632993, 0.03887301, 0.03651484,
        0.0421637 ]),
 'rank_test_score': array([1, 1, 1, 4, 5, 6], dtype=int32)}
df = pd.DataFrame(clf.cv_results_)
df
mean_fit_time std_fit_time mean_score_time std_score_time param_C param_kernel params split0_test_score split1_test_score split2_test_score split3_test_score split4_test_score mean_test_score std_test_score rank_test_score
0 0.001183 0.000674 0.000814 0.000428 1 rbf {'C': 1, 'kernel': 'rbf'} 0.966667 1.0 0.966667 0.966667 1.0 0.980000 0.016330 1
1 0.001046 0.000438 0.000485 0.000110 1 linear {'C': 1, 'kernel': 'linear'} 0.966667 1.0 0.966667 0.966667 1.0 0.980000 0.016330 1
2 0.000727 0.000169 0.000482 0.000184 10 rbf {'C': 10, 'kernel': 'rbf'} 0.966667 1.0 0.966667 0.966667 1.0 0.980000 0.016330 1
3 0.000843 0.000397 0.000545 0.000159 10 linear {'C': 10, 'kernel': 'linear'} 1.000000 1.0 0.900000 0.966667 1.0 0.973333 0.038873 4
4 0.000885 0.000429 0.000634 0.000389 20 rbf {'C': 20, 'kernel': 'rbf'} 0.966667 1.0 0.900000 0.966667 1.0 0.966667 0.036515 5
5 0.000650 0.000088 0.000442 0.000062 20 linear {'C': 20, 'kernel': 'linear'} 1.000000 1.0 0.900000 0.933333 1.0 0.966667 0.042164 6
df[['param_C','param_kernel','mean_test_score']]
param_C param_kernel mean_test_score
0 1 rbf 0.980000
1 1 linear 0.980000
2 10 rbf 0.980000
3 10 linear 0.973333
4 20 rbf 0.966667
5 20 linear 0.966667
clf.best_params_
{'C': 1, 'kernel': 'rbf'}
clf.best_score_
0.9800000000000001
dir(clf)
['__abstractmethods__',
 '__annotations__',
 '__class__',
 '__delattr__',
 '__dict__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__getstate__',
 '__gt__',
 '__hash__',
 '__init__',
 '__init_subclass__',
 '__le__',
 '__lt__',
 '__module__',
 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__setattr__',
 '__setstate__',
 '__sizeof__',
 '__sklearn_clone__',
 '__str__',
 '__subclasshook__',
 '__weakref__',
 '_abc_impl',
 '_build_request_for_signature',
 '_check_feature_names',
 '_check_n_features',
 '_check_refit_for_multimetric',
 '_estimator_type',
 '_format_results',
 '_get_default_requests',
 '_get_metadata_request',
 '_get_param_names',
 '_get_tags',
 '_more_tags',
 '_parameter_constraints',
 '_repr_html_',
 '_repr_html_inner',
 '_repr_mimebundle_',
 '_required_parameters',
 '_run_search',
 '_select_best_index',
 '_validate_data',
 '_validate_params',
 'best_estimator_',
 'best_index_',
 'best_params_',
 'best_score_',
 'classes_',
 'cv',
 'cv_results_',
 'decision_function',
 'error_score',
 'estimator',
 'fit',
 'get_metadata_routing',
 'get_params',
 'inverse_transform',
 'multimetric_',
 'n_features_in_',
 'n_jobs',
 'n_splits_',
 'param_grid',
 'pre_dispatch',
 'predict',
 'predict_log_proba',
 'predict_proba',
 'refit',
 'refit_time_',
 'return_train_score',
 'score',
 'score_samples',
 'scorer_',
 'scoring',
 'set_fit_request',
 'set_params',
 'transform',
 'verbose']

Use RandomizedSearchCV to reduce number of iterations and with random combination of parameters. This is useful when you have too many parameters to try and your training time is longer. It helps reduce the cost of computation

from sklearn.model_selection import RandomizedSearchCV
rs = RandomizedSearchCV(svm.SVC(gamma='auto'), {
        'C': [1,10,20],
        'kernel': ['rbf','linear']
    }, 
    cv=5, 
    return_train_score=False, 
    n_iter=2
)
rs.fit(iris.data, iris.target)
pd.DataFrame(rs.cv_results_)[['param_C','param_kernel','mean_test_score']]
param_C param_kernel mean_test_score
0 20 rbf 0.966667
1 1 rbf 0.980000

How about different models with different hyperparameters?

from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
model_params = {
    'svm': {
        'model': svm.SVC(gamma='auto'),
        'params' : {
            'C': list(range(1, 21)),
            'kernel': ['rbf','linear']
        }  
    },
    'random_forest': {
        'model': RandomForestClassifier(),
        'params' : {
            'n_estimators': list(range(1, 11))
        }
    },
    'logistic_regression' : {
        'model': LogisticRegression(solver='liblinear',multi_class='auto'),
        'params': {
            'C': list(range(1, 11))
        }
    },
    'naive_bayes_gaussian': {
        'model': GaussianNB(),
        'params': {}
    },
    'naive_bayes_multinomial': {
        'model': MultinomialNB(),
        'params': {}
    },
    'decision_tree': {
        'model': DecisionTreeClassifier(),
        'params': {
            'criterion': ['gini','entropy'],
            
        }
    }     
}
scores = []

for model_name, mp in model_params.items():
    clf =  GridSearchCV(mp['model'], mp['params'], cv=5, return_train_score=False)
    clf.fit(iris.data, iris.target)
    scores.append({
        'model': model_name,
        'best_score': clf.best_score_,
        'best_params': clf.best_params_
    })
    
df = pd.DataFrame(scores,columns=['model','best_score','best_params'])
df
model best_score best_params
0 svm 0.986667 {'C': 4, 'kernel': 'rbf'}
1 random_forest 0.966667 {'n_estimators': 4}
2 logistic_regression 0.966667 {'C': 4}
3 naive_bayes_gaussian 0.953333 {}
4 naive_bayes_multinomial 0.953333 {}
5 decision_tree 0.966667 {'criterion': 'gini'}

Based on above, I can conclude that SVM with C=1 and kernel=‘rbf’ is the best model for solving my problem of iris flower classification

Back to top