Kernels Ridge Regression

Kernel Ridge Regression (KRR) is a powerful machine learning technique that combines Ridge Regression with kernel methods. It is particularly useful for non-linear regression tasks where the relationship between the features and the target variable is complex.
Author

Benedict Thekkel

Basics of Ridge Regression

Ridge Regression is a type of linear regression that includes a regularization term to prevent overfitting.

Cost(w)=∑i=1n​(yi​−yi​^​)2+λ∑j=1p​wj2​

where: - yiyi​ is the true value, - yiyi​​ is the predicted value, - wjwj​ are the model coefficients, - λλ is the regularization parameter.

Kernels

Kernel methods involve using a kernel function to implicitly map the input features into a higher-dimensional space where a linear relationship might exist. This allows the model to capture non-linear relationships in the original feature space.

Common kernel functions include:

  • Linear Kernel: k(x,x′)=x⋅x′k(x,x′)=x⋅x′
  • Polynomial Kernel: k(x,x′)=(x⋅x′+1)dk(x,x′)=(x⋅x′+1)d
  • Gaussian (RBF) Kernel: k(x,x′)=exp⁡(−γ∥x−x′∥2)k(x,x′)=exp(−γ∥x−x′∥2)

Advantages of KRR

  • Non-linearity: It can model complex, non-linear relationships.
  • Flexibility: Different kernels can be used to capture various data patterns.
  • Regularization: The regularization term helps prevent overfitting.

Disadvantages of KRR - Computational Cost: Computing the kernel matrix can be computationally expensive, especially for large datasets. - Parameter Tuning: Choosing the right kernel and regularization parameter λλ can be challenging and often requires cross-validation.

Implementation

# Example data
X = np.array([[1, 2], [2, 3], [3, 4]])
y = np.array([1, 2, 3])



# Make predictions
predictions = krr.predict(X)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
path = Path('Data/homeprices.csv')
df = pd.read_csv(path)
df
area bedrooms age price
0 2600 3.0 20 550000
1 3000 4.0 15 565000
2 3200 NaN 18 610000
3 3600 3.0 30 595000
4 4000 5.0 8 760000
5 4100 6.0 8 810000
plt.xlabel('area')
plt.ylabel('price')
plt.scatter(df.area,df.price,color='red',marker='+')

plt.show()

new_df = df.drop('price',axis='columns')
new_df = new_df.drop('bedrooms',axis='columns')
new_df = new_df.drop('age',axis='columns')
new_df
area
0 2600
1 3000
2 3200
3 3600
4 4000
5 4100
price = df.price
price
0    550000
1    565000
2    610000
3    595000
4    760000
5    810000
Name: price, dtype: int64
from sklearn.kernel_ridge import KernelRidge
# Define the model
krr = KernelRidge(alpha=.1, kernel='rbf')

# Fit the model
krr.fit(new_df, price)
KernelRidge(alpha=0.1, kernel='rbf')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
krr.predict([[3300]])
/home/ben/miniconda3/envs/pfast/lib/python3.12/site-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but KernelRidge was fitted with feature names
  warnings.warn(
array([0.])
krr.predict([[5000]])
/home/ben/miniconda3/envs/pfast/lib/python3.12/site-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but KernelRidge was fitted with feature names
  warnings.warn(
array([0.])
numbers_list = list(range(2000, 4000, 100))
# Create a DataFrame using the pandas constructor and a dictionary
data = {'area': numbers_list}
area_df = pd.DataFrame(data)
area_df
area
0 2000
1 2100
2 2200
3 2300
4 2400
5 2500
6 2600
7 2700
8 2800
9 2900
10 3000
11 3100
12 3200
13 3300
14 3400
15 3500
16 3600
17 3700
18 3800
19 3900
p = krr.predict(area_df)
p
array([     0.        ,      0.        ,      0.        ,      0.        ,
            0.        ,      0.        , 500000.        ,      0.        ,
            0.        ,      0.        , 513636.36363636,      0.        ,
       554545.45454545,      0.        ,      0.        ,      0.        ,
       540909.09090909,      0.        ,      0.        ,      0.        ])
plt.plot(area_df, p)

Back to top