Training And Testing

Training And Testing Available Data
Author

Benedict Thekkel

We have a dataset containing prices of used BMW cars. We are going to analyze this dataset and build a prediction function that can predict a price by taking mileage and age of the car as input. We will use sklearn train_test_split method to split training and testing dataset

import pandas as pd
df = pd.read_csv("Data/carprices.csv")
df.head()
Mileage Age(yrs) Sell Price($)
0 69000 6 18000
1 35000 3 34000
2 57000 5 26100
3 22500 2 40000
4 46000 4 31500
import matplotlib.pyplot as plt

Car Mileage Vs Sell Price ($)

plt.scatter(df['Mileage'],df['Sell Price($)'])

Car Age Vs Sell Price ($)

plt.scatter(df['Age(yrs)'],df['Sell Price($)'])

Looking at above two scatter plots, using linear regression model makes sense as we can clearly see a linear relationship between our dependant (i.e. Sell Price) and independant variables (i.e. car age and car mileage)

The approach we are going to use here is to split available data in two sets

<ol>
    <b>
    <li>Training: We will train our model on this dataset</li>
    <li>Testing: We will use this subset to make actual predictions using trained model</li>
    </b>
 </ol>

The reason we don’t use same training set for testing is because our model has seen those samples before, using same samples for making predictions might give us wrong impression about accuracy of our model. It is like you ask same questions in exam paper as you tought the students in the class.

X = df[['Mileage','Age(yrs)']]
y = df['Sell Price($)']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
X_train
Mileage Age(yrs)
4 46000 4
13 58780 4
5 59000 5
7 72000 6
12 59000 5
11 79000 7
3 22500 2
9 67000 6
0 69000 6
8 91000 8
14 82450 7
2 57000 5
6 52000 5
15 25400 3
X_test
Mileage Age(yrs)
1 35000 3
10 83000 7
17 69000 5
16 28000 2
18 87600 8
19 52000 5
y_train
4     31500
13    27500
5     26750
7     19300
12    26000
11    19500
3     40000
9     22000
0     18000
8     12000
14    19400
2     26100
6     32000
15    35000
Name: Sell Price($), dtype: int64
y_test
1     34000
10    18700
17    19700
16    35500
18    12800
19    28200
Name: Sell Price($), dtype: int64

Lets run linear regression model now

from sklearn.linear_model import LinearRegression
clf = LinearRegression()
clf.fit(X_train, y_train)
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
X_test
Mileage Age(yrs)
1 35000 3
10 83000 7
17 69000 5
16 28000 2
18 87600 8
19 52000 5
clf.predict(X_test)
array([34944.44210911, 16905.69832696, 23351.64782019, 38167.41685573,
       14300.34495583, 27726.46589653])
y_results = pd.DataFrame(clf.predict(X_test))
y_results
0
0 34944.442109
1 16905.698327
2 23351.647820
3 38167.416856
4 14300.344956
5 27726.465897
y_res = y_results[0].sort_values(ascending=True).reset_index()
y_res.drop('index', axis = 1, inplace=True)
y_res
0
0 14300.344956
1 16905.698327
2 23351.647820
3 27726.465897
4 34944.442109
5 38167.416856
y_test
1     34000
10    18700
17    19700
16    35500
18    12800
19    28200
Name: Sell Price($), dtype: int64
y_t = y_test.sort_values(ascending=True).reset_index()
y_t
index Sell Price($)
0 18 12800
1 10 18700
2 17 19700
3 19 28200
4 1 34000
5 16 35500
y_t.drop('index', axis = 1, inplace=True)
y_t
Sell Price($)
0 12800
1 18700
2 19700
3 28200
4 34000
5 35500
plt.plot(y_t)
plt.plot(y_res)

clf.score(X_test, y_test)
0.9353054216597069

random_state argument

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=10)
X_test
Mileage Age(yrs)
7 72000 6
10 83000 7
5 59000 5
6 52000 5
3 22500 2
18 87600 8
Back to top