Ensemble Learning: Bagging Tutorial

Author

Benedict Thekkel

We will use pima indian diabetes dataset to predict if a person has a diabetes or not based on certain features such as blood pressure, skin thickness, age etc. We will train a standalone model first and then use bagging ensemble technique to check how it can improve the performance of the model

dataset credit: https://www.kaggle.com/gargmanas/pima-indians-diabetes

import pandas as pd

df = pd.read_csv("diabetes.csv")
df.head()
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1
df.isnull().sum()
Pregnancies                 0
Glucose                     0
BloodPressure               0
SkinThickness               0
Insulin                     0
BMI                         0
DiabetesPedigreeFunction    0
Age                         0
Outcome                     0
dtype: int64
df.describe()
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
count 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000
mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 0.471876 33.240885 0.348958
std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160 0.331329 11.760232 0.476951
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.078000 21.000000 0.000000
25% 1.000000 99.000000 62.000000 0.000000 0.000000 27.300000 0.243750 24.000000 0.000000
50% 3.000000 117.000000 72.000000 23.000000 30.500000 32.000000 0.372500 29.000000 0.000000
75% 6.000000 140.250000 80.000000 32.000000 127.250000 36.600000 0.626250 41.000000 1.000000
max 17.000000 199.000000 122.000000 99.000000 846.000000 67.100000 2.420000 81.000000 1.000000
df.Outcome.value_counts()
0    500
1    268
Name: Outcome, dtype: int64

There is slight imbalance in our dataset but since it is not major we will not worry about it!

Train test split

X = df.drop("Outcome",axis="columns")
y = df.Outcome
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_scaled[:3]
array([[ 0.63994726,  0.84832379,  0.14964075,  0.90726993, -0.69289057,
         0.20401277,  0.46849198,  1.4259954 ],
       [-0.84488505, -1.12339636, -0.16054575,  0.53090156, -0.69289057,
        -0.68442195, -0.36506078, -0.19067191],
       [ 1.23388019,  1.94372388, -0.26394125, -1.28821221, -0.69289057,
        -1.10325546,  0.60439732, -0.10558415]])
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, stratify=y, random_state=10)
X_train.shape
(576, 8)
X_test.shape
(192, 8)
y_train.value_counts()
0    375
1    201
Name: Outcome, dtype: int64
201/375
0.536
y_test.value_counts()
0    125
1     67
Name: Outcome, dtype: int64
67/125
0.536

Train using stand alone model

from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier

scores = cross_val_score(DecisionTreeClassifier(), X, y, cv=5)
scores
array([0.68831169, 0.68181818, 0.69480519, 0.77777778, 0.71895425])
scores.mean()
0.7123334182157711

Train using Bagging

from sklearn.ensemble import BaggingClassifier

bag_model = BaggingClassifier(
    base_estimator=DecisionTreeClassifier(), 
    n_estimators=100, 
    max_samples=0.8, 
    oob_score=True,
    random_state=0
)
bag_model.fit(X_train, y_train)
bag_model.oob_score_
0.7534722222222222
bag_model.score(X_test, y_test)
0.7760416666666666
bag_model = BaggingClassifier(
    base_estimator=DecisionTreeClassifier(), 
    n_estimators=100, 
    max_samples=0.8, 
    oob_score=True,
    random_state=0
)
scores = cross_val_score(bag_model, X, y, cv=5)
scores
array([0.75324675, 0.72727273, 0.74675325, 0.82352941, 0.73856209])
scores.mean()
0.7578728461081402

We can see some improvement in test score with bagging classifier as compared to a standalone classifier

Train using Random Forest

from sklearn.ensemble import RandomForestClassifier

scores = cross_val_score(RandomForestClassifier(n_estimators=50), X, y, cv=5)
scores.mean()
0.7617689500042442
Back to top