The Naive Bayes Approach

The Bayesian Approach and Gaussian Processes
Author

Benedict Thekkel

\(P(queen/diamond) = \dfrac{P(diamond/queen) * P(queen)}{P(diamond)}\)

$P(queen/diamond) = $

\(P(diamond/queen) = 1/4\)
\(P(queen) = 1/13\)
\(P(diamond) = 1/4\)

\(P(queen/diamond) = \dfrac{1/4 * 1/13}{1/4} = 1/13\)

import pandas as pd
df = pd.read_csv("Data/titanic.csv")
df.head()
PassengerId Name Pclass Sex Age SibSp Parch Ticket Fare Cabin Embarked Survived
0 1 Braund, Mr. Owen Harris 3 male 22.0 1 0 A/5 21171 7.2500 NaN S 0
1 2 Cumings, Mrs. John Bradley (Florence Briggs Th... 1 female 38.0 1 0 PC 17599 71.2833 C85 C 1
2 3 Heikkinen, Miss. Laina 3 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S 1
3 4 Futrelle, Mrs. Jacques Heath (Lily May Peel) 1 female 35.0 1 0 113803 53.1000 C123 S 1
4 5 Allen, Mr. William Henry 3 male 35.0 0 0 373450 8.0500 NaN S 0
df.drop(['PassengerId','Name','SibSp','Parch','Ticket','Cabin','Embarked'],axis='columns',inplace=True)
df.head()
Pclass Sex Age Fare Survived
0 3 male 22.0 7.2500 0
1 1 female 38.0 71.2833 1
2 3 female 26.0 7.9250 1
3 1 female 35.0 53.1000 1
4 3 male 35.0 8.0500 0
inputs = df.drop('Survived',axis='columns')
target = df.Survived
#inputs.Sex = inputs.Sex.map({'male': 1, 'female': 2})
dummies = pd.get_dummies(inputs.Sex)
dummies.head(3)
female male
0 0 1
1 1 0
2 1 0
inputs = pd.concat([inputs,dummies],axis='columns')
inputs.head(3)
Pclass Sex Age Fare female male
0 3 male 22.0 7.2500 0 1
1 1 female 38.0 71.2833 1 0
2 3 female 26.0 7.9250 1 0

I am dropping male column as well because of dummy variable trap theory. One column is enough to repressent male vs female

inputs.drop(['Sex','male'],axis='columns',inplace=True)
inputs.head(3)
Pclass Age Fare female
0 3 22.0 7.2500 0
1 1 38.0 71.2833 1
2 3 26.0 7.9250 1
inputs.columns[inputs.isna().any()]
Index(['Age'], dtype='object')
inputs.Age[:10]
0    22.0
1    38.0
2    26.0
3    35.0
4    35.0
5     NaN
6    54.0
7     2.0
8    27.0
9    14.0
Name: Age, dtype: float64
inputs.Age = inputs.Age.fillna(inputs.Age.mean())
inputs.head()
Pclass Age Fare female
0 3 22.0 7.2500 0
1 1 38.0 71.2833 1
2 3 26.0 7.9250 1
3 1 35.0 53.1000 1
4 3 35.0 8.0500 0
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(inputs,target,test_size=0.3)
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X_train,y_train)
GaussianNB()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
model.score(X_test,y_test)
0.7910447761194029
X_test[0:10]
Pclass Age Fare female
509 3 26.000000 56.4958 0
325 1 36.000000 135.6333 1
248 1 37.000000 52.5542 0
391 3 21.000000 7.7958 0
411 3 29.699118 6.8583 0
688 3 18.000000 7.7958 0
183 2 1.000000 39.0000 0
14 3 14.000000 7.8542 1
763 1 36.000000 120.0000 1
383 1 35.000000 52.0000 1
y_test[0:10]
509    1
325    1
248    1
391    1
411    0
688    0
183    1
14     0
763    1
383    1
Name: Survived, dtype: int64
model.predict(X_test[0:10])
array([0, 1, 0, 0, 0, 0, 0, 1, 1, 1])
model.predict_proba(X_test[:10])
array([[9.22826078e-01, 7.71739224e-02],
       [1.90547332e-04, 9.99809453e-01],
       [6.93224146e-01, 3.06775854e-01],
       [9.59335969e-01, 4.06640310e-02],
       [9.65380973e-01, 3.46190265e-02],
       [9.56271850e-01, 4.37281504e-02],
       [8.17245910e-01, 1.82754090e-01],
       [3.83233278e-01, 6.16766722e-01],
       [9.28107033e-04, 9.99071893e-01],
       [6.70466692e-02, 9.32953331e-01]])

Calculate the score using cross validation

from sklearn.model_selection import cross_val_score
cross_val_score(GaussianNB(),X_train, y_train, cv=5)
array([0.784     , 0.728     , 0.744     , 0.75806452, 0.80645161])
Back to top